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together via multiple communication links and protocols.

We focused on “wrap and glue” technology based on a domain specific
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that bridges the interoperability gap between individual COTS/GOTS
components. The key to making the proposed approach reliable, flexible,
and cost-effective is the automatic generation of glue and wrappers
based on a designer’s specification. The proposed “wrap and glue”
approach allows system designers to concentrate on the difficult
interoperability problems and defines sclutions in terms of deeper and
more difficult interoperability issues, while freeing designers from
implementation details. The objective of our research is to develop an
integrated set of formal models and methods for system engineering
automation. These results will enable building decision support tools
for concurrent engineering. Our research addresses complex modular
systems with embedded control software and real-time requirements.

Our long-term goals are to construct an integrated set of software
tools that can improve software quality and flexibility by automating a
significant part of the process and providing substantial decision
support for the aspects that cannot be automated. The resulting
development environment should be adaptable to enable (1) maintaining
integrated support in the presence of business process improvement, (2)
incorporation of future improvements in engineering automation methods,
and (3) specialization to particular problem domains.

Specific tasks accomplished in FY0O include (1) the design of an
interface wrapper model that allows developers to treat distributed
objects as local objects, (2) the development of a tool to generate
Java interface wrappers from a specification written in the high-level

Prototype System Description Language (PSDL), (3) the design of a
distributed heterogeneous environment to automate the process of
integration distributed systems, (4) a case study involving the
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and (8) reliability modeling for safety critical software.
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ABSTRACT

This paper suggests an approach to the development of
software testing and debugging automation tools based on
precise program behavior models. The program behavior
model is defined as a set of events (event trace) with two basic
binary relations over events -- precedence and inclusion, and
represents the temporal relationship between actions. A
language for the computations over event traces is developed
that provides a basis for assertion checking, debugging
queries, execution profiles, and performance measurements.

The approach is nondestructive, since assertion texts are
separated from the target program source code and can be
maintained independently. Assertions can capture the
dynamic properties of a particular target program and can

formalize the general knowledge of typical bugs and -

debugging strategies. An event grammar provides a sound
basis for assertion language implementation via target
program automatic instrumentation.

An implementation architecture and preliminary
experiments with a prototype assertion checker for the C
programming language are discussed.

Keywords

Program behavior models, events, event grammars,
software testing and debugging automation.

1 INTRODUCTION

Program testing and debugging is still 2 human activity
performed largely without any adequate tools, and consum-
ing more than 50% of the total program development time
and effort [9]. Testing and debugging are mostly concerned
with the program run-time behavior, and developing a pre-
cise model of program behavior becomes the first step
towards any dynamic analysis automation. In building such
a model several considerations were taken in account. The
first assumption we make is that the model is discrete, i.e.
comprises a finite number of well-separated elements. For
this reason the notion of event as an elementary unit of
action is an appropriate basis for building the whole model.
The event is an abstraction for any detectable action per-

formed during the program execution, such as a statement
execution, expression evaluation, procedure call, sending
and receiving a message, etc.

Actions (or events) are evolving in time and the program
behavior represents the temporal relationship between
actions. This implies the necessity to introduce an ordering
relation for events. Semantics of parallel programming
languages and even some sequential languages (such as C) do
not require the total ordering of actions, so partial event
ordering is the most adequate method for this purpose [21].

Actions performed during the program execution are at
different levels of granularity, some of them include other
actions, e.g. a subroutine call event contains statement exe-
cution events. This consideration brings to our model inclu-
sion relation. Under this relationship, events can be
hierarchical objects and it becomes possible to consider pro-
gram behavior at appropriate levels of granularity.

Finally, the program execution can be modeled as a set of
events (event trace) with two basic relations: partial ordering
and inclusion. In order to specify meaningful program
behavior properties we have to enrich events with some
attributes.

An event may have a type and some other attributes, such
as event duration, program source code related to the event,
program state associated with the event (i.e. program variable
values at the beginning and at the end of the event), etc. This
program behavior model may be regarded as a “lightweight”
semantics of the programming language.

The next problem to be addressed after the program
behavior model is set up is the formalism for specifying
properties of the program behavior. This could be done in
many different ways, e.g., by adopting some kind of logic
calculi (predicate logic, temporal logic). Such a direction
leads to tools for static program verification, or in more
pragmatic incarnations to an approach called model checking
[12].

Since our goal is dynamic program analysis that requires
different types of assertion checking, debugging queries,
program execution profiles, and so on, we developed the




concept of a computation over the event trace. It seems that
this concept is general enough to cover all the above
mentioned needs in the unifying framework, and provides
sufficient flexibility. This approach implies the design of a
special programming language for computations over the
event traces. We suggest a particular language called
FORMAN ([3], [17]) based on a functional paradigm and the
use of event patterns and aggregate operations over events.
The papers [2], [3], [17] are based on our assertion checker
prototype for a subset of the PASCAL language. This paper
describes the first experience with an assertion checker for the
C programming language. The implementation of the C
assertion checker is based on source code automatic
instrumentation and supports almost complete C language
(the most serious constraint is the requirement that the target
program is contained in a single compilation unit). To adjust
to the specifics of the C target language the FORMAN
language has been modified, in particular, the scope construct
(WITHIN function-name) and explicit type cast have been
added (see examples in Sec. 4).

Patterns describe the structure of events with context
conditions. Program paths can be described by path
expressions over events. All this makes it possible to write
assertions not only about variable values at program points
but also about data flow and control flow in the target
program. Assertions can also be used as conditions in rules
which describe debugging actions. For example, an error
message is a typical action for a debugger or consistency
checker. Thus, it is also possible to specify debugging
strategies.

The notions of event and event type are powerful
abstractions which make it possible to write assertions
independent of a particular target program. Such generic
assertions can be collected in standard libraries which
represent general knowledge about typical bugs and
debugging strategies and could be designed and distributed as
special software tools.

Possible applications of a language for computations over
aprogram event trace include program testing and debugging,
performance measurement and modeling, program profiling,
program animation, program maintenance and program
documentation [5]. Even the traditional debugging method
based on scattering print statements across the source code
may be easily implemented as an appropriate computation on
the event trace (see example in Sec 4). The advantage is that
the print statements are kept in a separate file and the source
code of the target program will be instrumented automatically
just before execution. A study of applying FORMAN to
parallel programming is presented in [4].

2 EVENTS

FORMAN is based on a semantic model of target program
behavior in which the program execution is represented by a

set of events. An event occurs when some action is performed
during the program execution process. For instance, a
function is called, a statement is executed, or some expression
is evaluated. A particular action may be performed many
times, but every execution of an action is denoted by a unique
event.

Every event defines a time interval which has a beginning
and an end. For atomic events, the beginning and end points
of the time interval will be the same. All events used for
assertion checking and other computations over event traces
must be detectable by some implementation (e.g. by an
appropriate target program instrumentation.) Attributes
attached to events bring additional information about event
context, such as current variable and expression values.

In order to give some rationale for our notion of an event,
let us consider a well-known idea such as a counter. Usually
the history of a variable X when used as a counter looks like:

X:=0;..
Loop ...

X=X+1;..
endloop; ...

In order to determine whether the actual behavior of the
counter X matches the pattern described by the program
fragment above we have to consider the following events. Let

Initialize_X denotes the event of assigning O to the variable

X, Augment_X denotes the event of incrementing X, and
Assign_X denotes the event of assigning any value to the
variable X. The event Assign_X is a composite one; it
contains either Initialize_X or Augment_X events. One could
determine if X behaves as a counter when a program segment
S is executed in the following way. First, the sequence A of
all events of the type Assign_X from the event trace of
program segment S has to be extracted preserving the
ordering between events. Second, A has to be matched with
the pattern:

Initialize X (Augment_ X)*

where **’ denotes repetition zero or more times. If the
actual sequence of events does not match this pattern we can
report an error. Therefore, assertion checking can be
represented as a kind of computation over a target program
event trace. '

The program state (current values of variables) can be
considered at the beginning or at the end of an appropriate
event. This provides the opportunity to write assertions about
program variable values at different points in the program
execution history.

Program profiling usually is based on counting the number
of events of some type, e.g. the number of statement
executions or procedure calls. Performance measurements
may be based on attaching the duration attribute to such




events and summarizing durations of selected events.

3 PROGRAM BEHAVIOR MODEL

FORMAN is intended to be used to specify behavior of
programs written in some high-level programming language
which is called the rarget language. The model of target
program behavior is formally defined as a set of events (event
trace) with two basic relations, which may or may not hold
between two arbitrary events. The events may be sequentially
ordered (PRECEDES), or one of them might be included in
another composite event (IN). For each pair of events in the
event trace no more than one of these relations can be
established.

In order to define the behavior model for a particular target
language, types of events are introduced. Each event belongs
to one or more of predefined event types, which are induced
by target language abstract syntax (e.g. execute-statement,
send-message, receive-message) or by target language
semantics (e.g., rendezvous, wait, put-message-in-queue).

The target program execution model is defined by an event
grammar. The event may be a compound object, in which
case the grammar describes how the event is split into other
event sequences or sets. The event grammar is a set of axioms
that describe possible patterns of basic relations between
events of different types in the program execution history; it
is not intended to be used for parsing an actual event trace.

The rule A B C establishes that if an event a of the
type A occurs in the trace of a program, it is necessary that
events b and c of types B and C also exist, such that the
relations b IN a, ¢ IN a, b PRECEDES c hold.

For the C language assertion checker prototype we have
defined the following simple event grammar.

(Axiom 1) execute_program::
(‘ex_stmt | eval_expr )*
{Axiom 2) ex_stmt::

. (ex_stmt | eval_expr )*
(Axiom 3) eval_expr:: func_call |
eval_expr+ destination? |
{ eval_expr } +
(Axiom 4) func_call::
{ eval_expr }* ex_stmt*

Axiom 1 states that the program execution event contains
(the IN relation) a set of zero or more ordered (w.r.t. relation
PRECEDES) events of the types execute-statement or
evaluate-expression.

Axiom 2 states the same fact about the execute_statement
event. For example, the event of executing a composite
statement such as if-then-else will contain an event

eval_expr for condition evaluation and a sequence of zero
or more events for the corresponding THEN or ELSE branch
execution. If a statement has a label’ attached, the label
traversal itself is considered as an empty statement execution
event.

Axiom 3 describes the possible structure of an expression
evaluation event: it may contain a function call event or may
be an ordered sequence of other expression evaluation events
(e.g. for a ‘comma” expression). The assignment expression
evaluation contains the event destination which is
distinguished because it is of a special importance for
assertion checking. In our model we have avoided any
assumptions about the ordering of argument evaluation for
binary operations, such as ‘+’ or **’, since the C language
semantics leaves this undefined [18]. The metaexpression
{eval_expr}+ denotes a set of one or more events of the
type eval_expr without any ordering relationship.

Axiom 4 describes the structure of a function call event
which starts with a set (may be empty) of unordered events
for actual parameter evaluation followed by the function body
execution events.

The order of event occurrences reflects the semantics of
the target language. When performing an assignment
statement, first the right-hand part is evaluated and after this
the destination event occurs (which denotes the assignment
event itself). The event grammar makes FORMAN suitable
for automatic source code instrumentation to detect all
necessary events.

An event has attributes, such as the source text fragment
from the corresponding target program, current values of
target program variables and expressions at the beginning and
at the end of event, the duration of the event, a previous path
(i.e. set of events preceding the event in the target program
execution history), etc.

FORMAN supplies a means for writing assertions about
events and event sequences and sets. These include
quantifiers and other aggregate operations over events, e.g.,
sequence, bag and set constructors, boolean operations and
operations of the target language to write assertions about
target program variables.

Events can be described by patterns which capture the
structure of event and context conditions. Program paths can
be described by regular path expressions over events.

4 EXAMPLES OF DEBUGGING RULES

In general, a debugging rule performs some actions that
may include computations over the target program event
trace. The aim is to generate informative messages and to
provide the user with some values obtained from the trace in
order to detect and localize bugs. Rules can provide dialog to
the user as well. An assertion is a boolean expression that may
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contain quantifiers and sequencing constraints over events.

Assertions can be used as conditions in the rules
describing actions that can be performed if an assertion is
satisfied or violated. A debugging rule has the form:

assertion SAY (expression sequence)
ONFAIL SAY (expression sequence)

The presence of metavariables in the assertion makes it
possible to use FORMAN as a debugger’s query language.
The evaluation of an assertion is interrupted when it becomes
clear that the final value will be False (or True), and the
current values of metavariables can be used to generate
readable and informative messages.

We will use as an example of a C program the Simple
Tokenizer program described in [25]. This program reads a
text file until the special symbol ‘.’ (dot) is read, recognizes
small integers, identifiers, and some predefined key words,
skips spaces and PASCAL-like comments, prints the input
text with line numbers attached before each line, splits the
output into pages with a page header on the top of each page
(including page number), and reports each token recognized.
Unrecognized symbols are printed as ERROR tokens. The
source code contains 542 lines of code (including some of our
updates and comments). The following list of function
prototypes used in the Simple Tokenizer gives some idea of
the architecture.

void init_scanner (char *name) ;
void init_page_header (char *name);
BOOLEAN get_source_line();

void get_char();

void skip_blanks();

void skip_comment () ;

void get_token();

void get_word() ;

BOOLEAN is_reserved_word() ;

void get number () ;

void get_special();

void open_source_file(char *name);
void close_source_file();

void print_line(char linel[]);
void print_token() ;

void print_page_header () ;

void quit_scanner();

The input text file for Simple Tokenizer used for running
the following examples contained 150 lines of text with a
total of 454 tokens. The corresponding output contained 13
pages with maximum of 50 lines per page (including the input
lines and messages about tokens recognized, each on a

separate line of output).

Example of a debugging query.

In order to obtain the history of a global variable
page_number the following computation over the event
trace can be performed. The WITHIN construct indicates the
scope of the trace computations defined by this rule. The rule
condition is TRUE, and as a side effect the entire history of
variable page_number is shown. The [ 1 list
constructor defines a loop over the entire program event trace
(execute_program event). All events matching the
pattern func_call IS printf (i.e. events of the type
func_call and function name ‘printf’) executed within the
body of print_page_header function are selected from
the trace and the function VALUE is applied to them. The
metavariable C holds the event func_call under
consideration. The resulting sequence consists of variable
page_number values at the end of each event captured by
metavariable C during the program execution.

WITHIN print_page_ header
TRUE

SAY( ‘The history of page number variable
values is:

[ C: func_call IS ‘printf’

FROM execute_program

APPLY VALUE (int) (AT C page_number) ]);
END

When executed on our prototype the following output is
produced:

The history of page number variable values
is: 1 23456 78 9 10 11 12 13

This debugging rule provides a slice of the program
execution history containing the trace of particular variable
values. The matter of interest may be, for instance, to check
whether the values in the variable history are arranged in
ascending order.

Example of an assertion checking.

Let us write and check the assertion: “There exists an input
line with length exceeding some maximum, say 10.” The
program snippet containing the function get_source_line
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looks like:
BOOLEAN get_source_line ()
{char
print_buffer[MAX_SOURCE_LINE_LENGTH+9];
if ((fgets (source buffer,
MAX_ SOURCE_LINE LENGTH,
source_file)) != NULL) {
++line_number;
Get_Line:
sprintf (print_buffer, “$4d %d: %s”,
line number, level, source_buffer);
print_line (print_buffer);
return (TRUE) ;

}

else return (FALSE) ; }

Traversal of a label is an event of the type ex_stmt, and
we can check the value of a C expression
strlen(source_buffer) > 10 after this event.

WITHIN get_source_line

EXISTS L: ex_stmt IS ‘Get_Line:’

FROM execute_program

VALUE (int) (AT L strlen(source buffer) »10)
SAY('Too long input line detected at stmt’ )
SAY (L)
SAY( ‘It is
VALUE (int) (AT L strlen(source_buffer))
‘characters long’)
ONFAIL SAY (' No long input lines detected’);

We check whether the expression
strlen(source_buffer) > 10 isnotequal to 0 forall
events L. When the assertion is satisfied for the first time, the
assertion evaluation terminates and the current value of the
metavariable L can be used for message output. In order to
make error messages more informative, the value of a
metavariable when printed by the SAY clause is shown in the
form:

event-type:> event-source-text

source line number within function name

Time= event-begin-time event-end-time

Event begin and end times in this prototype
implementation are simply values of the step counter.

When executed on our prototype this assertion checking

yields the following output.
Too long input line detected at stmt

eéx_stmt :> ‘'‘Get_Line:’ source line 460
within function get_source_line

Time= 95 .. 96

It is 20 characters long

Example of a run time statistics gathering.

It is hard to measure real execution time of a heavily
instrumented target program, although the simulated time
measurement may be performed given that events may have
some duration attributes predefined. In order to obtain the
actual number of function calls executed, number of function
get_source_line calls, and number of tokens
recognized by the Simple Tokenizer, the following query can
be performed:

TRUE
SAY ('Total function calls’
CARD[ ALL func_call
FROM execute_program] )
SAY (‘Total function get_source_line calls’
CARD [ func_call IS get_source_line
FROM execute program] )
SAY('Total tokens recognized’
CARD [ ALL func_call IS get_token
FROM execute_program]
', among them ‘
CARD [ ALL F: func_call &
SOURCE_TEXT (F) == ‘get_token’
AND VALUE (int) (AT F token == ERROR)
FROM execute_ program]
‘ERROR tokens detected’ );

The CARD operator returns the number of items selected
by the aggregate operation, i.e. the number of events
matching the pattern in the aggregate operation body. The
ALL option in the aggregate operation indicates that all nested
events of the type func_call should be taken into account.
The pattern in the third aggregate operation provides an
example of a complex event pattern with a context condition
attached. The scope of this trace computation is the entire
program trace. After execution on our prototype the
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following output is obtained.
Total function calls 6802
Total function get_source_line calls 150
Total tokens recognized 454, among them 37

ERROR tokens detected

Example of path expression checking.

Regular expressions over event patterns may describe
sequences of events extracted from the event trace. The
following assertion checks whether function get_token and
print_token calls appear in a certain order. Sequence of events
satisfying the pattern X:func_call& SOURCE_TEXT(X) ==
‘get_token’ OR SOURCE_TEXT(X)=="print_token’ is
selected from the entire event trace and matched against the
path expression (func_call IS ‘get_token’ func_call IS
‘print_token’) +. A message is produced with information
about the pattern matching results.

[ X: func_call & SOURCE_TEXT (X) ==

‘get_token’ OR

SOURCE_TEXT (X) ==
‘print_token’ FROM execute_program ]

SATISFIES (func_call IS ‘get_token’
func_call IS ‘print_token’ ) +
SAY (*function calls follow the pattern
(get_token print_token) + ')
ONFAIL SAY( ‘pattern
(get_token print_token) +

is violated’);

Example of instrumenting the target source code with
print statements.

Suppose we want to insert in the target source code print
statements to print at run time the value of input strings with
length exceeding 10 and corresponding line numbers. Values
of interest are available in global variables
source_buffer and 1line_number, respectively. The
following debugging rule performs this function.

WITHIN get_source line
FOREACH L1: ex stmt IS ‘Get_Line:’
FROM execute_program
VALUE ( int )

( AT L1 strlen(source buffer)>10?

printf(*long line!!!\n%s\n”, source_buffer) :1)
AND
VALUE ( int )
( AT L1
printf (*line_number=%d\n”, line_number)) ;
END

Formally this rule will cause an assertion checking, which
will be successful since the C expression involved yields a
non-zero value (representing Boolean TRUE); as a side effect
the print statements are executed at run time. This debugging
rule has two aspects worthy of notice. First, the
instrumentation code is separated from the target code; it will
be inserted automatically just before the execution and can be
maintained in a separate file. There may be several different
print instrumentations defined for the same target program;
keeping them in separate files provides a great flexibility in
arranging a custom set of print statements to be inserted at run
time. Second, the instrumentation is attached to a particular
event in the trace matching the pattern ex_stmt IS
‘Get_Line:’, i.e. traversal of the label Get_Line:,
therefore it does not depend on possible target code
modifications as long as the label is not changed.

Debugging rules can be considered as a way of formalizing
reasoning about the target program execution -- humans often
use similar patterns for reasoning when debugging programs.
For example, if the index expression of an array element is
out of range, the debugger can try a rule for eval-index events
that invokes another rule about a wrong value of the event
eval-expression, which in turn will cause investigation of
histories of all variables included in the expression.

5 BRIEF IMPLEMENTATION SURVEY

The architecture of the computations over the event traces
for the C programming language is based on the automatic
instrumentation of the target program source code in such a
way that some computations over the trace are performed at
run time and the rest of information is saved in the trace file
for postmortem processing. The instrumentation does not
change the semantics of the target program. The trace file is
read by the FORMAN interpreter to complete the
computations over the trace and to generate messages. A
special attempt in this prototype was made to optimize the
trace generation, in particular to filter events in order to
reduce the size the trace.

The front end of the assertion checker was adapted and
modified from Shawn’s Flisakowski parser and abstract
syntax tree builder for the complete C programming language
(gec version) [14]. The instrumentation module was designed
by Ana Erendira Flores-Mendoza as her Master’s project in
the NMSU CS Department [15]. The total size of the software
used for the prototype amounts to more then 20KLOC of C/
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lex/yacc/Rigal [1] code.

Since an event in our model has a duration and may
contain another events, it is represented on the trace by two
records, one for the beginning of event and one for the end.
The semantics of the C language do not specify the order of
subexpression execution; to address this issue and to ensure
proper nesting of event eval_expr beginning and end records
on the trace the instrumented code maintains some auxiliary
stack for expression evaluation. A similar stack mechanism is
added to the instrumented code to maintain proper nesting of
ex_stmt and func_call events when performing return, goto,
and break statements. These specifics of our target program
behavior model led as to the decision to implement the
instrumentation module from the scratch rather than to use
some generic instrumentation tools like [33]. The basic
building block for expression E instrumentation is comma-
expression (el, temp = E, €2, temp), where el stands for
prologue instrumentation, e2 stands for epilog
instrumentation, and temp variable holds the result of the
original expression E evaluation.

Only events necessary for the given FORMAN program
are involved in the computations over the trace and put on the
trace. For the Simple Tokenizer program discussed above,
using the input file with 150 lines and 454 tokens and the
entire set of debugging rules described in the previous section
the total number of events generated by the target program
according to the event grammar is 105,808, although only
7253 of them (less then 7%) are put on the trace. Even in its
current state with many potential optimizations not yet
implemented, the prototype demonstrates the feasibility of
trace computations for “typical” student programs like the
Simple Tokenizer. Our experiments with other C programs
show that storing several tens of thousands of events on the
trace is sufficient for a large number of “typical” C programs
run with a set of debugging rules and assertions similar to the
examples in Sec. 4. It should be noted that typically the size
of input data used for testing and debugging purposes is
relatively small.

6 RELATED WORK

What follows is a very brief survey of basic ideas known
in Debugging Automation to provide the background for the
approach advocated in this paper.

Event Notion

The Event Based Behavioral Abstraction (EBBA) method
suggested in [7] characterizes the behavior of the entire
program in terms of both primitive and composite events.
Context conditions involving event attribute values can be
used to distinguish events. EBBA defines two higher-level
means for modeling system behavior -- clustering and
filtering. Clustering is used to express behavior as composite
events, i.e. aggregates of previously defined events. Filtering

serves to eliminate from consideration events which are not
relevant to the model being investigated. Both event
recognition and filtering can be performed at run-time.

An event-based debugger for the C programming language
called Dalek [27] provides a means for describing user-
defined events which typically are points within a program
execution trace. A target program has to be instrumented in
order to collect values of event attributes. Composite events
can be recognized at run-time as collections of primitive
events.

FORMAN has a more comprehensive modeling approach
than EBBA or Dalek, based on the event grammar. A
language for expressing computations over execution
histories is provided, which is missing in EBBA and Dalek.
The event grammar makes FORMAN suitable for automatic
source code instrumentation to detect all necessary events.
FORMAN supports the design of universal assertions and
debugging rules that could be used for debugging of arbitrary
target programs. This generality is missing in the EBBA and
Dalek approaches. The event in FORMAN is a time interval,
in contrast with the event notion in previous approaches
where events are considered pointwise time moments.

The COCA debugger [13] for the C language uses the
GDB debugger for tracing and PROLOG for debugging
queries execution. It provides a certain event grammar for C
traces and event patterns based on attributes for event search.
The query language is designed around special primitives
built into the PROLOG query evaluator. We assume that
FORMAN is more suitable for trace computations as it has
been designed for this specific purpose.

Path Expressions

Data and control flow descriptions of the target program
are essential for testing and debugging purposes. It is useful
to give such a description in an explicit and precise form. The
path expression technique introduced for specifying parallel
programs in [11] is one such formalism. Trace specifications
also are used in [26] for software specification. This
technique has been used in several projects as a background
for high-level debugging tools, (e.g. in [10]), where path rules
are suggested as a kind of debugger commands. FORMAN
provides a flexible language means for trace specification
including event patterns and regular expressions over them.

Assertion Languages

Assertion (or annotation) languages provide yet another
approach to debugging automation. The approaches currently
in use are mostly based on boolean expressions attached to
selected points of the target program, like the assert macro in
C [18]. The ANNA [23] annotation language for the Ada
target language supports assertions on variable and type
declarations. In the TSL [22], [29] annotation language for
Ada the notion of event is introduced in order to describe the
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behavior of Tasks. Patterns can be written which involve
parameter values of Task entry calls. Assertions are written in
Ada itself, using a number of special pre-defined predicates.
Assertion-checking is dynamic at run-time, and does not need
post-mortem analysis. The RAPIDE project [24] provides an
event-based assertion language for software architecture
description.

In [6] events are introduced to describe process
communication, termination, and connection and detachment
of process to channels. A language of Behavior Expressions
(BE) is provided to write assertions about sequences of
process interactions. BE is able to describe allowed
sequences of events as well as some predicates defined on the
values of the variables of processes. Event types are process
communication and interactions such as send, receive,
terminate, connect, detach. Evaluation of assertions is done at
run-time. No composite events are provided.

Another experimental debugging tool is based on trace
analysis with respect to assertions in temporal interval logic.
This work is presented in [20] where four types of events are
introduced: assignment to variables, reaching a label,
interprocess communication and process instantiation or
termination. Composite events cannot be defined. Different
varieties of temporal logic languages are used for program
static analysis called Model Checking [12].

In [30] a practical approach to programming with
assertions for the C language is advocated, and it is
demonstrated that even local assertions associated with
particular points within the program may be extremely useful
for program debugging.

The DUEL [19] debugging language introduces
expressions for C aggregate data exploration, for both
assertions and queries.

The FORMAN language for computations over traces
provides a flexible means for writing both local and global
assertions, including those about temporal relations between
events.

Algorithmic Debugging

The original algorithmic program debugging method was
introduced in [32] for the Prolog language. In [31] and [16]
this paradigm is applied to a subset of PASCAL. The
debugger executes the program and builds a trace execution
tree at the procedure level while saving some useful trace
information such as procedure names and input/output
parameter values. The algorithmic debugger traverses the
execution tree and interacts with the user by asking about the
intended behavior of each procedure. The user has the
possibility to answer “yes” or “no” about the intended
behavior of the procedure. The search finally ends and a bug
is localized within a procedure p when one of the following
holds: procedure p contains no procedure calls, or all
procedure calls performed from the body of procedure P

fulfill the user’s expectations.

Algorithmic debugging can be considered as an example
of debugging strategy, based on some assertion language (in
this case assertions about results of a procedure call). The
notion of computation over execution trace introduced in
FORMAN may be a convenient basis for describing such
debugging strategies.

7 CONCLUSIONS

In brief, our approach can be explained as “computations
over a target program event trace based on a precise program
behavior model”. According to [8] and [28], approximately
40-50% of all bugs detected during the program testing are
logic, structural, and functionality bugs, i.e., bugs which
could be detected by appropriate assertion checking similar to
that demonstrated above.

We expect the advantages of our approach to be the
following:

* The notion of an event grammar provides a general
basis for program behavior models. In contrast with pre-
vious approaches, the event is not a point in the trace but
an interval with a beginning and an end.

* Event grammar provides a coordinate system to refer to
any interesting event in the execution history. Event
attributes provide complete access to each target pro-
gram’s execution state. Assertions about particular exe-
cution states as well as assertions about sets of different
execution states may be checked.

* The IN relation yields a hierarchy of events, so the
assertions can be defined at an appropriate level of granu-
larity.

* A language for computations over event traces pro-
vides a uniform framework for assertion checking, pro-
files, debugging queries, and performance measurements.

* The fact that assertions and other computations over the
target program event trace can be separated from the
text of the target program allows accumulation of for-
malized knowledge about particular programs and makes
it easy to control the number of assertions to be checked.

The first experiments with our C assertion checker
prototype prove that:

* instrumentation of the C source code may be an appropri-
ate technique for automatic testing and debugging tool
design,

* event filtering can reduce the size of the stored event
trace to 5-20% of the total trace,

*  the size of the stored event trace could be kept within
reasonable limits (several tens of thousands of events) for
realistic C programs.

The future work will be dedicated to further optimizations
of trace computation and event filtering, and to the design of
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an appropriate user interface.
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ABSTRACT

This paper suggests an approach to the development of
software testing and debugging automation tools based on
precise program behavior models. The program behavior
model is defined as a set of events (event trace) with two basic
binary relations over events -- precedence and inclusion, and
represents the temporal relationship between actions. A
language for the computations over event traces is developed
that provides a basis for assertion checking, debugging
queries, execution profiles, and performance measurements.

The approach is nondestructive, since assertion texts are
separated from the target program source code and can be
maintained independently. An event grammar provides a
sound basis for assertion language implementation via target
program automatic instrumentation. Preliminary experiments
with a prototype assertion checker for the C programming
language are discussed.

1 INTRODUCTION

Program testing and debugging is still a human activity
performed largely without any adequate tools, and consum-
ing more than 50% of the total program development time
and effort [8]. Testing and debugging are mostly concerned
with the program run-time behavior, and developing a pre-
cise model of program behavior becomes the first step
towards any dynamic analysis automation. In building such a
model several considerations were taken in account. The first
assumption we make is that the model is discrete, i.e. com-
prises a finite number of well-separated elements. For this
reason the notion of event as an elementary unit of action is
an appropriate basis for building the whole model. The event
is an abstraction for any detectable action performed during
the program execution, such as a statement execution,
expression evaluation, procedure call, sending and receiving
a message, etc.

Actions (or events) are evolving in time and the program
behavior represents the temporal relationship between
actions. This implies the necessity to introduce an ordering
relation for events. Semantics of parallel programming
languages and even some sequential languages (such as C) do
not require the total ordering of actions, so partial event

ordering is the most adequate for this purpose [19].

Actions performed during the program execution are at
different levels of granularity, some of them include other
actions, e.g. a subroutine call event contains statement exe-
cution events. This consideration brings to our model inclu-
sion relation. Under this relationship, events can be
hierarchical objects and it becomes possible to consider pro-
gram behavior at appropriate levels of granularity.

An event may have a type and some other attributes, such
as event duration, program source code related to the event,
program state associated with the event (i.e. program variable
values at the beginning and at the end of the event), etc. This
program behavior model may be regarded as a “lightweight”
semantics of the programming language.

The next problem to be addressed after the program
behavior model is set up is the formalism for specifying
properties of the program behavior. This could be done in
many different ways, e.g., by adopting some kind of logic
calculi (predicate logic, temporal logic). Such a direction
leads to tools for static program verification, such as an
approach called model checking [11].

Since our goal is dynamic program analysis that requires
different types of assertion checking, debugging queries,
program execution profiles, and so on, we developed the
concept of a computation over the event trace. It seems that
this concept is general enough to cover all the above
mentioned needs in the unifying framework, and provides
sufficient flexibility. This approach implies the design of a
special programming language for computations over the
event traces. We suggest a particular language called
FORMAN ({2}, [16]) based on a functional paradigm and the
use of event patterns and aggregate operations over events.
The papers [1], [2], [16] are based on our assertion checker
prototype for a subset of the PASCAL language. This paper
describes the first experience with an assertion checker for the
C programming language. The implementation of the C
assertion checker is based on source code automatic
instrumentation. To adjust to the specifics of the C target
language the FORMAN language has been modified, in
particular, the scope construct (WITHIN function-name) and

18




explicit type cast have been added (see examples in Sec. 4).

Patterns describe the structure of events with context
conditions. Program paths can be described by path
expressions over events. All this makes it possible to write
assertions not only about variable values at program points
but also about data flow and control flow in the target
program.

Possible applications of a language for computations over
a program event trace include program testing and debugging,
performance measurement and modeling, program profiling,
program animation, program maintenance and program
documentation [4]. Even the traditional debugging method
based on scattering print statements across the source code
may be easily implemented as an appropriate computation on
the event trace (see example in Sec 4). The advantage is that
the print statements are kept in a separate file and the source
code of the target program will be instrumented automatically
just before execution. A study of applying FORMAN to
parallel programming is presented in [3].

2 EVENTS

FORMAN is based on a semantic model of target program
behavior in which the program execution is represented by a
set of events. An event occurs when some action is performed
during the program execution process. For instance, a
function is called, a statement is executed, or some expression
is evaluated. A particular action may be performed many
times, but every execution of an action is denoted by a unique
event.

Every event defines a time interval which has a beginning
and an end. For atomic events, the beginning and end points
of the time interval will be the same. All events used for
assertion checking and other computations over event traces
must be detectable by some implementation (e.g. by an
appropriate target program instrumentation.) Attributes
attached to events bring additional information about event
context, such as current variable and expression values.

In order to give some rationale for our notion of an event,
let us consider a well-known idea such as a counter. Usually
the history of a variable X when used as a counter looks like:

X = 0;
Loop

X =X + 1;
endloop; ...

In order to determine whether the actual behavior of the
counter X matches the pattern described by the program
fragment above we have to consider the following events. Let
Initialize_X denotes the event of assigning 0 to the variable
X, Augment_X denotes the event of incrementing X, and
Assign_X denotes the event of assigning any value to the
variable X. The event Assign X is a composite one; it

contains either Initialize_X or Augment_X events. One could
determine if X behaves as a counter when a program segment
S is executed in the following way. First, the sequence A of
all events of the type Assign_X from the event trace of
program segment S has to be extracted preserving the
ordering between events. Second, A has to be matched with
the pattern:

Initialize X (Augment X)*

where ‘*’ denotes repetition zero or
more times. If the actual sequence of
events does not match this pattern we can
report an error. Therefore, assertion
checking can be represented as a kind of
computation over a target program event
trace.

The program state (current values of variables) can be
considered at the beginning or at the end of an appropriate
event. This provides the opportunity to write assertions about
program variable values at different points in the program
execution history.

3 PROGRAM BEHAVIOR MODEL

FORMAN is intended to be used to specify behavior of
programs written in some high-level programming language
which is called the target language. The model of target
program behavior is formally defined as a set of events (event
trace) with two basic relations, which may or may not hold
between two arbitrary events. The events may be sequentially
ordered (PRECEDES), or one of them might be included in
another composite event (IN). For each pair of events in the
event trace no more than one of these relations can be
established.

In order to define the behavior model for a particular target
language, types of events are introduced. Each event belongs
to one or more of predefined event types, which are induced
by target language abstract syntax (e.g. execute-statement,
send-message, receive-message) or by target language
semantics (e.g., rendezvous, wait, put-message-in-queue).

The target program execution model is defined by an event
grammar. The event may be a compound object, in which
case the grammar describes how the event is split into other
event sequences or sets. The event grammar is a set of axioms
that describe possible patterns of basic relations between
events of different types in the program execution history; it
is not intended to be used for parsing an actual event trace.

Therule A B C establishes that if an event a of the
type A occurs in the trace of a program, it is necessary that
events b and c of types B and C also exist, such that the
relations b IN a, ¢ IN a, b PRECEDES c hold.

For the C language assertion checker prototype we have
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defined the following simple event grammar.
(Axiom 1) execute_ program: :
( ex_stmt | eval_expr )*
(Axiom 2) ex_stmt::
( ex_stmt | eval expr )»*
(Axiom 3) eval expr:: func_call |
eval expr+ destination? |
{ eval_expr } +
(Axiom 4) func call::
{ eval_expr }* ex stmt*

Axiom 1 states that the program execution event contains
(the IN relation) a set of zero or more ordered (w.r.t. relation
PRECEDES) events of the types execute-statement or
evaluate-expression.

Axiom 2 states the same fact about the execute_statement
event. For example, the event of executing a composite
statement such as if-then-else will contain an event
eval_expr for condition evaluation and a sequence of zero
or more events for the corresponding THEN or ELSE branch
execution. If a statement has a label attached, the label
traversal itself is considered as an empty statement execution
event.

Axiom 3 describes the possible structure of an expression
evaluation event: it may contain a function call event or may
be an ordered sequence of other expression evaluation events
(e.g. for a ‘comma” expression). The assignment expression
evaluation contains the event destination which is
distinguished because it is of a special importance for
assertion checking. In our implementation we have avoided
any assumptions about the ordering of argument evaluation
for binary operations, such as “+ or ‘*’, since the C language
semantics leaves this undefined [17]. The grammar rule
{eval_expr}+ denotes a set of one or more events of the
type eval _expr without any ordering relationship.

Axiom 4 describes the structure of a function call event
which starts with a set (may be empty) of unordered events
for actual parameter evaluation followed by the function body
execution events.

The order of event occurrences reflects the semantics of
the target language. When performing an assignment
statement, first the right-hand part is evaluated and after this
the destination event occurs (which denotes the assignment
event itself). The event grammar makes FORMAN suitable
for automatic source code instrumentation to detect all
necessary events.

An event has attributes, such as the source text fragment
from the corresponding target program, current values of
target program variables and expressions at the beginning and
at the end of event, the duration of the event, a previous path

(i.e. set of events preceding the event in the target program
execution history), etc.

FORMAN supplies a means for writing assertions about
events and event sequences and sets. These include
quantifiers and other aggregate operations over events, e.g.,
sequence, bag and set constructors, boolean operations and
operations of the target language to write assertions about
target program variables.

Events can be described by patterns which capture the
structure of event and context conditions. Program paths can
be described by regular path eXpressions over events.

4 EXAMPLES OF DEBUGGING RULES

In general, a debugging rule performs some actions that
may include computations over the target program event
trace. The aim is to generate informative messages and to
provide the user with some values obtained from the trace in
order to detect and localize bugs. An assertion is a boolean
expression that may contain quantifiers and sequencing
constraints over events.

Assertions can be used as conditions in the rules
describing actions that can be performed if an assertion is
satisfied or violated. A debugging rule has the form:

assertion SAY (expression sequence)

ONFAIL SAY (expression sequence)

We will use as an example of a C program the Simple
Tokenizer program described in [23]. This program reads a
text file until the special symbol ¢’ (dot) is read, recognizes
small integers, identifiers, and some predefined key words,
skips spaces and PASCAL-like comments, prints the input
text with line numbers attached before each line, splits the
output into pages with a page header on the top of each page
(including page number), and reports each token recognized.
Unrecognized symbols are printed as ERROR tokens. The
source code contains 542 lines of code (including some of our
updates and comments). The input file used for running the
following examples contained 150 lines of text with a total of
454 tokens. The corresponding output contained 13 pages
with maximum of 50 lines per page (including the input lines
and messages about tokens recognized, each on a separate
line of output).

Example of a debugging query.

In order to obtain the history of a global variable
page_number the following computation over the event
trace can be performed. The WITHIN construct indicates the
scope of the trace computations defined by this rule. The rule
condition is TRUE, and as a side effect the entire history of
variable page_number is shown. The [ ... ] list
constructor defines a loop over the entire program event trace
(execute_program event). All events matching the
pattern func_call IS printf executed within the
body of print_page_ header function are selected from
the trace and the function VALUE is applied to them. The
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metavariable C holds the event func call under
consideration. The resulting sequence consists of variable
page_number values at the end of each event captured by

metavariable C  during the program execution.
WITHIN print_page header
TRUE
SAY ( ‘The history of page_number

variable values is: °
[ C: func _call IS printf
FROM execute_program
APPLY VALUE (int) (AT C page_number) ]);
END

When executed on our prototype the following output is
produced:

The history of page_number variable values
is: 123456789 10 11 12 13

This debugging rule provides a slice of the program
execution history containing the trace of particular variable
values. The matter of interest may be, for instance, to check
whether the values in the variable history are arranged in
ascending order.

Example of an assertion checking.

Let us write and check the assertion: “There exists an input
line with length exceeding some maximum, say 10 The
program snippet containing the function
get_source_line looks like:

BOOLEAN
{char print_bufferflMAX_SOURCE_LINE_LENGTH +9 1;

get_source_line()

if ((fgets (source_buffer,
MAX_SOURCE_LINE_LENGTH,
source_file)) != NULL) {

++line_number;

Get_Line:

sprintf (print_buffer, “%4d %d: $s”,

line number,level, source buffer);

print_line(print_buffer);

return (TRUE) ;

}

else return (FALSE) ; }

Traversal of a label is an event of the type ex_stmt, and
we can check the wvalue of a C expression

strlen(source_buffer) > 10 after this event.
WITHIN get_ source_ line

EXISTS L: ex_stmt IS ‘Get_Line:’

FROM execute_program

VALUE (int) (AT L strlen(source_buffer) >10)
SAY('Too long input line detected at stmt’ )
SAY (L)
SAY( ‘It is
VALUE (int) (AT L strlen(source_buffer))
‘characters long’)
ONFAIL SAY (' No long input lines detected’);

We check whether the expression
strlen(source_buffer) > 10 isnotequalto 0 forall
events L. When the assertion is satisfied for the first time, the
assertion evaluation terminates and the current value of the
metavariable L can be used for message output. In order to
make error messages more informative, the value of a
metavariable when printed by the SAY clause is shown in the
form:

event-type:> event-source-text
source_line_number

within function_name

. event-end-time

Event begin and end times in this prototype
implementation are simply values of the step counter.

Time= event-begin-time

When executed on our prototype this assertion checking
yields the following output.

Too long input line detected at stmt

ex_stmt :> ‘Get_Line:’ source line 460

within function get_source_line
Time= 95 .. 96
It is 20 characters long
Example of a run time statistics gathering.

It is hard to measure real execution time of a heavily
instrumented target program, although the simulated time
measurement may be performed given that events may have
some duration attributes predefined. In order to obtain the
actual number of function calls executed, number of function
get_source_line calls, and number of tokens
recognized by the Simple Tokenizer, the following query can
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be performed:
TRUE
SAY('Total function calls’
CARD[ ALL func_call
FROM execute_program])
SAY ('Total function get_source_line calls’
CARD [ func_call IS get_source_line
FROM execute_program] )
SAY(‘Total tokens recognized’
CARD [ ALL func_call IS get_token
FROM execute_program]
', among them ‘
CARD [ ALL F: func call &
SOURCE_TEXT (F) == ‘get_token’
AND VALUE (int) (AT F token == ERROR)
FROM execute program]
'ERROR tokens detected’ );

The CARD operator returns the number of items selected
by the aggregate operation, i.e. the number of events
matching the pattern in the aggregate operation body. The
ALL option in the aggregate operation indicates that all nested
events of the type func_call should be taken into account.
The pattern in the third aggregate operation provides an
example of a complex event pattern with a context condition
attached. The scope of this trace computation is the entire
program trace. After execution on our prototype the
following output is obtained.

Total function calls 6802
Total function get_source_line calls 150
Total tokens recognized 454 , among them 37

ERROR tokens detected

Example of path expression checking.

Regular expressions over event patterns may describe
sequences of events extracted from the event trace. The
following assertion checks whether function get_token
and print_token calls appear in a certain order. Sequence
of events satisfying the pattem X: func_calils
SOURCE_TEXT (X) == ‘get_token’  OR
SOURCE_TEXT (X) =='print_token’ is selected from
the entire event trace and matched against the path expression
(func_call IS ‘get token’ func_call 1Is
‘print_token’) +. A message is produced with
information about the pattern matching results.

[ X: func_call & SOURCE_ TEXT (X)==
‘get_token’ OR
SOURCE_TEXT (X) ==

‘print_token’ FROM execute_program ]
SATISFIES (func_call IS ‘get_token’
func_call IS ‘print_token’ ) +
SAY (‘function calls follow the pattern
(get_token print_ token) + ')

ONFAIL SAY( ‘pattern

(get_token print_token) +
is violated’);

Example of instrumenting the target source code with
print statements. Suppose we want to insert in the target
source code print statements to print at run time the value of
input strings with length exceeding 10 and corresponding line
numbers. Values of interest are available in global variables
source_buffer and line_number, respectively. The
following debugging rule performs this function.

WITHIN get_source_line
FOREACH Ll: ex_stmt IS ‘Get_Line:’
FROM execute_program
VALUE ( int )

( AT L1 strlen(source buffer)>10?
printf (“long line!!!\n%s\n”, source buffer):1)

AND

VALUE ( int )
( AT L1
printf(“line_number:%d\n”,1ine_number));
END

Formally this rule will cause an assertion checking, which
will be successful since the C expression involved yields a
non-zero value (representing Boolean TRUE); as a side effect
the print statements are executed at run time. This debugging
rule has two aspects worthy of notice. First, the
Instrumentation code is separated from the target code; it will
be inserted automatically just before the execution and can be
maintained in a separate file. There may be several different
print instrumentations defined for the same target program,;
keeping them in separate files provides a great flexibility in
arranging a custom set of print statements to be inserted at run
time. Second, the instrumentation is attached to a particular
event in the trace matching the pattern ex_stmt IS
‘Get_Line:’, ie. traversal of the label Get_Line:,
therefore it does not depend on possible target code
modifications as long as the label is not changed.

5 BRIEF IMPLEMENTATION SURVEY

The architecture of the computations over the event traces
for the C programming language is based on the automatic
instrumentation of the target program source code in such a
way that some computations over the trace are performed at
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run time and the rest of information is saved in the trace file
for postmortem processing. The instrumentation does not
change the semantics of the target program. The trace file is
read by the FORMAN interpreter to complete the
computations over the trace and to generate messages. A
special attempt in this prototype was made to optimize the
trace generation, in particular to filter events in order to
reduce the size the trace.

The front end of the assertion checker was adapted and
modified from Shawn’s Flisakowski parser and abstract
syntax tree builder for the complete C programming language
(gec version) [13]. The instrumentation module was designed
by Ana Erendira Flores-Mendoza as her Master’s project in
the NMSU CS Department [14]. The total size of the software
used for the prototype amounts to more then 20KLOC of C/
lex/yacc code.

Since an event in our model has a duration and may
contain another events, it is represented on the trace by two
records, one for the beginning of event and one for the end.
The semantics of the C language do not specify the order of
subexpression execution; to address this issue and to ensure
proper nesting of event eval_expr beginning and end
records on the trace the instrumented code maintains some
auxiliary stack for expression evaluation. A similar stack
mechanism is added to the instrumented code to maintain
proper nesting of ex_stmt and func_call events when
performing return, goto, and break statements. These
specifics of our target program behavior model led as to the
decision to implement the instrumentation module from the
scratch rather than to use some generic instrumentation tools
like [31].

Only events necessary for the given FORMAN program
are involved in the computations over the trace and put on the
trace. For the Simple Tokenizer example discussed above,
using the input file with 150 lines and 454 tokens and the
entire set of debugging rules described in the previous section
the total number of events generated by the target program
according to the event grammar is 105,808, although only
7253 of them (less then 7%) are put on the trace. Even in its
current state with many potential optimizations not yet
implemented, the prototype demonstrates the feasibility of
trace computations for “typical” student programs like the
Simple Tokenizer. Our experiments show that storing several
tens of thousands of events on the trace is sufficient for
“typical” C programs run with a set of debugging rules and
assertions similar to the examples in Sec. 4. It should be noted
that typically the size of input data used for testing and
debugging purposes is relatively small.

6 RELATED WORK

What follows is a very brief survey of basic ideas known
in Debugging Automation to provide the background for the

approach advocated in this paper.

Event Notion

The Event Based Behavioral Abstraction (EBBA) method
suggested in [6] characterizes the behavior of the entire
program in terms of both primitive and composite events.
Context conditions involving event attribute values can be
used to distinguish events. EBBA defines two higher-level
means for modeling system bebavior -- clustering and
filtering. Clustering is used to express behavior as composite
events, i.e. aggregates of previously defined events. Filtering
serves to eliminate from consideration events which are not
relevant to the model being investigated. Both event
recognition and filtering can be performed at run-time.

An event-based debugger for the C programming language
called Dalek [25] provides a means for describing user-
defined events which typically are points within a program
execution trace. A target program has to be instrumented in
order to collect values of event attributes. Composite events
can be recognized at run-time as collections of primitive
events.

FORMAN has a more comprehensive modelling approach
than EBBA or Dalek, based on the event grammar. A
language for expressing computations over execution
histories is provided, which is missing in EBBA and Dalek.
The event grammar makes FORMAN suitable for automatic
source code instrumentation to detect all necessary events.
FORMAN supports the design of universal assertions and
debugging rules that could be used for debugging of arbitrary
target programs. This generality is missing in the EBBA and
Dalek approaches. The event in FORMAN is a time interval,
in contrast with the event notion in previous approaches
where events are considered pointwise time moments.

The COCA debugger [12] for the C language uses the
GDB debugger for tracing and PROLOG for debugging
queries execution. It provides a certain event grammar for C
traces and event patterns based on attributes for event search.
The query language is designed around special primitives
built into the PROLOG query evaluator. We assume that
FORMAN is more suitable for trace computations as it has
been designed for this specific purpose.

Path Expressions

Data and control flow descriptions of the target program .
are essential for testing and debugging purposes. It is useful
to give such a description in an explicit and precise form. The
path expression technique introduced for specifying parallel
programs in [10] is one such formalism. Trace specifications
also are used in [24] for software specification. This
technique has been used in several projects as a background
for high-level debugging tools, (e.g. in [9]), where path rules
are suggested as a kind of debugger commands. FORMAN
provides a flexible language means for trace specification
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including event patterns and regular expressions over them.

Assertion Languages

Assertion (or annotation) languages provide yet another
approach to debugging automation. The approaches currently
in use are mostly based on boolean expressions attached to
selected points of the target program, like the assert macro in
C [17]. The ANNA [21] annotation language for the Ada
target language supports assertions on variable and type
declarations. In the TSL [20], [27] annotation language for
Ada the notion of event is introduced in order to describe the
behavior of Tasks. Patterns can be written which involve
parameter values of Task entry calls. Assertions are written in
Ada itself, using a number of special pre-defined predicates.
Assertion-checking is dynamic at run-time, and does not need
post-mortem analysis. The RAPIDE project [22] provides an
event-based assertion language for software architecture
description.

In [5] events are introduced to describe process
communication, termination, and connection and detachment
of process to channels. A language of Behavior Expressions
(BE) is provided to write assertions about sequences of
process interactions. BE is able to describe allowed
sequences of events as well as some predicates defined on the
values of the variables of processes. Event types are process
communication and interactions such as send, receive,
terminate, connect, detach. Evaluation of assertions is done at
run-time. No composite events are provided.

Another experimental debugging tool is based on trace
analysis with respect to assertions in temporal interval logic.
This work is presented in [18] where four types of events are
introduced: assignment to variables, reaching a label,
Interprocess communication and process instantiation or
termination. Composite events cannot be defined. Different
varieties of temporal logic languages are used for program
static analysis called Model Checking {11].

In [28] a practical approach to programming with
assertions for the C language is advocated, and it is
demonstrated that even local assertions associated with
particular points within the program may be extremely useful
for program debugging.

The FORMAN language for computations over traces
provides a flexible means for writing both local and global
assertions, including those about temporal relations between
events.

Algorithmic Debugging

The original algorithmic program debugging method was
introduced in [30] for the Prolog language. In [29] and [15]
this paradigm is applied to a subset of PASCAL. The
debugger executes the program and builds a trace execution
tree at the procedure level while saving some useful trace
information such as procedure names and input/output
parameter values. The algorithmic debugger traverses the

execution tree and interacts with the user by asking about the
intended behavior of each procedure. The user has the
possibility to answer “yes” or “no” about the intended
behavior of the procedure. The search finally ends and a bug
is localized within a procedure p when one of the following
holds: procedure p contains no procedure calls, or all
procedure calls performed from the body of procedure p
fulfill the user’s expectations.

Algorithmic debugging can be considered as an example
of debugging strategy, based on some assertion language (in
this case assertions about results of a procedure call). The
notion of computation over execution trace introduced in
FORMAN may be a convenient basis for describing such
debugging strategies.

7 CONCLUSIONS

In brief, our approach can be explained as “computations
over a target program event trace based on a precise program
behavior model”. According to [7] and [26], approximately
40-50% of all bugs detected during the program testing are
logic, structural, and functionality bugs, i.e., bugs which
could be detected by appropriate assertion checking similar
to that demonstrated above.

The first experiments with our C assertion checker
prototype prove that:

* instrumentation of the C source code may be an appropri-
ate technique for automatic testing and debugging tool
design,

* event filtering can reduce the size of the stored event
trace to 5-20% of the total trace,

* the size of the stored event trace could be kept within

reasonable limits (several tens of thousands of events) for
realistic C programs.

ACKNOWLEDGEMENTS

I'would like to thank Jonathan Cook, Larry King, and Hue
McCoy for valuable remarks and suggestions.

This work was supported in part by NSF grant #9810732.

References

[1] M. Auguston, “A language for debugging automation”,
Proceedings of the 6th International Conference on Soft-
ware Engineering and Knowledge Engineering, Jurmala,
June 1994, Knowledge Systems Institute, pp. 108-115.

[2] M. Auguston, “Program Behavior Model Based on
Event Grammar and its Application for Debugging
Automation”, in Proceedings of the 2nd International
Workshop on Automated and Algorithmic Debugging,
Saint-Malo, France, May 1995.

[3] M. Auguston, P. Fritzson, “PARFORMAN -- an
Assertion Language for Specifying Behavior when
Debugging Parallel Applications”, International Journal
of Software Engineering and Knowledge Engineering,

24




vol.6, No 4, 1996, pp. . 609-640.

[4] M. Auguston, A. Gates, M. Lujan, “Defining a program
Behavior Model for Dynamic Analyzers”, Proceedings
of the 9th International Conference on Software
Engineering and Knowledge Engineering, SEKE’97,
Madrid, Spain, June 1997, pp. 257-262

[5] F. Baiardi, N. De Francesco, G. Vaglini, “Development
of a Debugger for a Concurrent Language”, IEEE
Transactions on Software Engineering, vol. SE-12, No.
4, April 1986, pp. 547-553.

[6] P.C. Bates, J. C. Wileden, “High-Level Debugging of
Distributed Systems: The Behavioral Abstraction
Approach”, The Journal of Systems and Software 3,
1983, pp. 255-264.

[71 B. Beizer, Software Testing Techniques, Second
Edition, International Thomson Computer Press, 1990.

[8] F. Brooks, The Mythical Man-Month, 2nd edition,
Addison-Wesley, 1995.

[91 B. Bruegge, P. Hibbard, “Generalized Path
Expressions: A High-Level Debugging Mechanism”,
The Journal of Systems and Software 3, 1983, pp. 265-
276.

[10] R.H. Campbell, A. N. Habermann, “The specification
of process synchronization by path expressions”, Lecture
Notes in Computer Science, vol. 16, 1974, pp. 89-102.

[11] E.Clarke et al., “Verification tools for Finite State
Concurrent Systems”, LNCS vol.803, 1994, pp.124-175.

[12] M.Ducasse, “COCA: A Debugger for C Based on Fine
Grained Control Flow and Data Events”, Tech. Report
#1202, IRISA/ISNA, September 1998, pp.19

[13] Shawn Flisakowski, Parser and Abstract Syntax Tree
Builder for the C Programming Language, fip site at:
ftp.cs.wisc.edu:/coral/tmp/spf/ctree-0.02.tar.gz

[14] Ana  Erendira Flores-Mendoza, “C  program
instrumentation architecture for event trace collection”,
M.Sc. Thesis, Computer Science Department, New
Mexico State University, Summer 1997.

[15] P. Fritzson, N. Shahmehri, M. Kamkar, T. Gyimothy,
“Generalized Algorithmic Debugging and Testing”,
ACM LOPLAS -- Letters of Programming Languages
and Systems. Vol. 1, No. 4, December 1992.

[16] P. Fritzson, M. Auguston, N. Shahmehri, “Using
Assertions in Declarative and Operational Models for
Automated Debugging”, The Journal of Systems and
Software 25, 1994, pp. 223-239.

[17] S.Harbison, G. Steele, “C: A Reference Manual”,
Fourth Edition, Prentice Hall, 1995.

[18] G. Goldszmidt, S. Katz, S. Yemini, “Interactive
Blackbox Debugging for Concurrent Languages”,
SIGPLAN Notices vol. 24, No. 1, 1989, pp. 271-282.

[19] L.Lamport, “Time, Clocks, and the Ordering of Events
in a Distributed System”, Communications of the ACM,
vol. 21, No. 7, July 1978, pp. 558-565.

[20] D.C. Luckham, D. Bryan, W. Mann, S. Meldal, D. P.
Helmbold, “An Introduction to Task Sequencing
Language, TSL version 1.5” (Preliminary version),
Stanford University, February 1, 1990, pp. 1-68.

[21] D. C. Luckham, S. Sankar, S. Takahashi, “Two-
Dimensional Pinpointing: Debugging with Formal
Specifications”, IEEE Software, January 1991, pp.74-84.

[22] D. Luckham, J. Vera, “An Event-Based Architecture
Definition Language”, IEEE Transactions on Software
Engineering, Vol.21, No. 9, 1995, pp. 717-734.

[23] R.Mak, “Writing Compilers and Interpreters”, John
Wiley & Sons, 1991.

[24] J. McLean, “A Formal Method for the Abstract
Specification of Software”, Journal of the Association of
Computing Machinery, vol.31, No. 3, July 1984, pp. 600-
627.

[25] R. Olsson, R. Crawford, W. Wilson, “A Dataflow
Approach to Event-based Debugging”, Software --
Practice and Experience, Vol.21(2), February 1991, pp.
19-31.

(26] S. L. Pfleeger, Software Engineering, Theory and
Practice, Prentice Hall, 1998.

[27] D. Rosenblum, “Specifying Concurrent Systems with
TSL”, IEEE Software, May 1991, pp.52-61.

[28] D.Rosenblum, “A Practical Approach to Programming
With Assertions”, IEEE Transactions on Software
Engineering, Vol. 21, No 1, January 1995, pp. 19-31.

[29] N. Shahmehri, “Generalized Algorithmic Debugging”,
Ph.D. Thesis No. 260, Dept. of Computer and
Information Science, Linkdping University, S-581 83
Linkdping, Sweden, 1991. ,

[30] E. Shapiro, “Algorithmic Program Debugging”, MIT
Press, May 1982.

[31] K.Templer, C.Jeffrey, “A configurable automatic
instrumentation tool for ANSI C”, In the Proceedings of
Automated Software Engineering Conference, 1998

25




“Lightweight” Semantics Models for Program
Testing and Debugging Automation

(Extended Abstract)

Mikhail Auguston
Computer Science Department, New Mexico State University,
Las Cruces, NM 88003, USA
mikau@cs.nmsu.edu
http://www.cs.nmsu.edu/~mikau

1 Introduction

We suggest an approach to the development of software testing and debugging automation tools based on precise
program behavior models. The program behavior model is defined as a set of events (event trace) with two basic
binary relations over events -- precedence and inclusion, and represents the temporal relationship between actions. A
language for the computations over event traces is developed that provides a basis for assertion checking, debugging
queries, execution profiles, and performance measurements.

The approach is nondestructive, since assertion texts are separated from the target program source code and can be
maintained independently. Assertions can capture both the dynamic properties of a particular target program and can
formalize the general knowledge of typical bugs and debugging strategies. An event grammar provides a sound basis
for assertion language implementation via target program automatic instrumentation. Event grammars may be
designed for sequential as well as for parallel programs. The approach suggested can be adjusted to a variety of pro-
gramming languages. We illustrate these ideas on examples for the Occam and C programming languages.

Dynamic program analysis is one of the least understood activities in software development. A major problem is
still the inability to express the mismatch between the expected and the observed behavior of the program on the level
of abstraction maintained by the user [9]. In other words, a flexible and expressive specification formalism is needed
to describe properties of the software system’s implementation. Program testing and debugging is still a human activ-
ity performed largely without any adequate tools and consuming more than 50% of the total program development
time and effort [8]. Debugging concurrent programs is even more difficult because of parallel activities, non-deter-
minism and time-dependent behavior,

One way to improve the situation is to partially automate the debugging process. Precise model of program behav-
ior becomes the first step towards debugging automation. It appears that traditional methods of programming lan-
guage semantics definition don’t address this aspect. In building such a model several considerations were taken in
account. The first assumption we make is that the model is discrete, i.e. comprises a finite number of well-separated
elements. This assumption is typical for Computer Science methods used for static and dynamic analysis of programs.
For this reason the notion of event as an elementary unit of action is an appropriate basis for building the whole
model. The event is an abstraction for any detectable action performed during the program execution, such as a state-
ment execution, expression evaluation, procedure call, sending and receiving a message, etc.

Actions (or events) are evolving in time and the program behavior represents the temporal relationship between

actions. This implies the necessity to introduce an ordering relation for events. Semantics of parallel programming
languages and even some sequential languages (such as C) don’t require the total ordering of actions, so partial event
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ordering is the most adequate method for this purpose [11].

Actions performed during the program execution are at different levels of granularity, some of them include other
actions, e.g. a subroutine call event contains statement execution events. This consideration brings to our model inclu-
sion relation. Under this relationship events can be hierarchical objects and it becomes possible to consider program
behavior at appropriate levels of granularity.

Finally, the program execution can be modeled as a set of events (event trace) with two basic relations: partial
ordering and inclusion. The event trace actually is a model of program’s behavior temporal aspect. In order to specify
meaningful program behavior properties we have to enrich events with some attributes. An event may have a type and
some other attributes, such as event duration, program source code related to the event, program state associated with
the event (i.e. program variable values at the beginning and at the end of event), etc.

The next problem to be addressed after the program behavior model is set up is the formalism specifying properties
of the program behavior. Since our goal is debugging automation, i.e. a kind of program dynamic analysis that
requires different types of assertion checking, debugging queries, program execution profiles, and so on, we came up
with the concept of a computation over the event trace. It seems that this concept is general enough to cover all the
above mentioned needs in the unifying framework, and provides sufficient flexibility. This approach implies the
design of a special programming language for computations over the event traces. We suggest a particular language
called FORMAN [1}, [3], [10] based on functional paradigm and the use of event patterns and aggregate operations
over events.

Patterns describe the structure of events with context conditions. Program paths can be described by path expres-
sions over events. All this makes it possible to write assertions not only about variable values at program points but
also about data and control flows in the target program. Assertions can also be used as conditions in rules which
describe debugging actions. For example, an error message is a typical action for a debugger or consistency checker.
Thus, it is also possible to specify debugging strategies.

The notions of event and event type are powerful abstractions which make it possible to write assertions indepen-
dent of any target program. Such generic assertions can be collected in standard libraries which represent the general
knowledge about typical bugs and debugging strategies and could be designed and distributed as special software
tools.

FORMAN is a general language to describe computations over program event trace that can be considered as an
example of a special programming paradigm. Possible application areas include program testing and debugging, per-
formance measurement and modeling, program profiling, program animation, program maintenance and program
documentation [5]. A study of FORMAN application for parallel programming is presented in [4]

2 Events, Event Traces, and the Language for Computations Over Event Traces

FORMAN is based on a semantic model of target program behavior in which the program execution is represented
by a set of events. An event occurs when some action is performed during the program execution process. For
instance, a message is sent or received, a statement is executed, or some expression is evaluated. A particular action
may be performed many times, but every execution of an action is denoted by a unique event.

Every event defines a time interval which has a beginning and an end. For atomic events, the beginning and end
points of the time interval will be the same. All events used for assertion checking and other computations over event
traces must be detectable by some implementation (e.g. by an appropriate target program instrumentation.) Attributes
attached to events bring additional information about event context, such as current variable and expression values.

The model of target program behavior is formally defined through a set of general axioms about two basic rela-
tions, which may or may not hold between two arbitrary events: they may be sequentially ordered (PRECEDES), or
one of them might be included in another composite event (IN). For each pair of events in the event trace no more
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than one of these relations can be established.

There are several general axioms that should be satisfied by any events a, b, ¢ in the event trace of any target pro-
gram.,

1) Mutual exclusion of relations.

a PRECEDES b => not (a IN b) and not (b IN a)
a IN b => not(a PRECEDES b) and not (b PRECEDES a)

2) Noncommutativity.

a PRECEDES b => not( b PRECEDES a)
a INb => not( b IN a)

3) Transitivity.

(a PRECEDES b ) and ( b PRECEDES ¢ ) => ( a PRECEDES c)
(aINb)and(bINc)=>(aINc)

Irreflexivity for PRECEDES and IN follows from 2). Note that PRECEDES and IN are irreflexive partial order-
ings.

4) Distributivity

(a IN b) and (b PRECEDES c) => (a PRECEDES c)
(a PRECEDES b) and (¢ IN b) => (a PRECEDES c)
(FOR ALL a IN b (FOR ALL ¢ IN d (a PRECEDES c) )) => (b PRECEDES d)

In order to define the behavior model for some target language, types of events are introduced. Each event belongs
to one or more of predefined event types, which are induced by target language abstract syntax (e.g. execute-state-
ment, send-message, receive-message) or by target language semantics (rendezvous, wait, put-message-in-queue).

The target program execution model is defined by an event grammar. The event may be a compound object and the
grammar describes how the event is split into other event sequences or sets. For example, the event execute-assign-
ment-statement contains a sequence of events evaluate-right-hand-part and execute-destination. The evaluate-right-
hand-part, in turn, consists of an unique event evaluate-expression. The event grammar is a set of axioms that describe
possible patterns of basic relations between events of different type in the program execution history, it is not intended
to be used for parsing actual event trace.

TheruleA :: ( B C) establishes that if an event a of the type A occurs in the trace of a program, it is necessary
that events b and ¢ of types B and C, also exist, such that the relations b IN a . ¢ IN a, b PRECEDES c hold.

For example, the event grammar describing the semantics of a PASCAL subset may contain the following rules.
The names, such as execute-program, and ex-stmt denote event types.

execute-program :: ( ex-stmt * )

This means that each event of the type execute-program contains an ordered (w.r.t. relation PRECEDES)
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sequence of zero or more events of the type ex-stmt.
ex-stmt :: ( label? ( ex-assignment | ex-read-stmt | ex-write-stmt |
ex-reset-stmt | ex-rewrite-stmt | ex-close-stmt | ex-cond-stmt |
ex-loop-stmt | call-procedure) )

The event of the type ex-stmt contains one of the events ex-assignment, ex-read-stmt , and so on.
This inner event determines the particular type of statement executed and may be preceded by an optional event of the
type label (traversing a label attached to the statement).

ex-assignment :: (ex-righthand-part destination)

The order of event occurrences reflects the semantics of the target language. When performing assignment state-
ment first the right-hand part is evaluated and after this the destination event occurs (which denotes the assignment
event itself). The event grammar makes FORMAN suitable for automatic source code instrumentation to detect all
necessary events.

An event has attributes, for instance, source text fragment from the corresponding target program, current values of
target program variables and expressions at the beginning and at the end of event, duration of the event, previous path
(i.e. set of events preceding the event in the target program execution history), etc.

FORMAN supplies a means for writing assertions about events and event sequences and sets. These include quan-
tifiers and other aggregate operations over events, e.g., sequence, bag and set constructors, boolean operations and
operations of target language to write assertions on target program variables [2] [3]. Events can be described by pat-
terns which capture the structure of event and context conditions. Program paths can be described by regular path
expressions over events.

The main extension for the parallel case [4] consists of the introduction of a new kind of composite event -- “snap-
shot,” which can be considered an abstraction for the notion “a set of events that may happen at the same time.” The
“snapshot” event is a set of events each pair of which is not under the relation PRECEDES, this makes it possible to
describe and to detect at run-time such typical parallel processing faults as data races and deadlock states.

3 Examples of Debugging Rules and Queries

In general, a debugging rule performs some actions that may include computations over the target program execu-
tion history. The aim is to generate informative messages and to provide the user with some values obtained from the
trace in order to detect and localize bugs. Rules can provide dialog to the user as well. An assertion is a boolean
expression that may contain quantifiers and sequencing constraints over events.

Assertions can be used as conditions in the rules describing actions that can be performed if an assertion is satisfied
or violated. A debugging rule has the form:

assertion SAY (expression sequence)
ONFAIL SAY (expression sequence)
The presence of metavariables in the assertion makes it possible to use FORMAN as a debugger query language.
The computation of an assertion is interrupted when it becomes clear that the final value will be False, and the current

values of metavariables can be used to generate readable and informative messages.

The following examples have been executed on our prototype FORMAN/PASCAL assertion checker [2], [3]- The
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PASCAL program reads a sequence of integers from file XX.TXT.

program el;
var X: integer;
XX: file of text;
begin
X:= 7;
(* initial value is assigned here *)
reset (XX, ‘XX.TXT');
while X<>0 do
read (XX, X)

end.

The contents of the file XX TXT are as follows:
11 53 7 8 9 3 13 2 3 45 8 754 45567 0

Example of a Query 1. In order to obtain the history of variable X the following computation over event trace can
be performed. The rule condition is TRUE, and is shown as a side effect the whole history of variable X.

TRUE
SAY ( 'The history of variable X is:'
[D: destination IS X FROM execute_program APPLY VALUE(D) ] )

The [ ... 1 construct above defines a loop over the whole program execution trace (execute_program
event). All events matching the pattern destination IS X are selected from the trace and the function VALUE is
applied to them. The resulting sequence consists of values assigned to the X variable during the program execution.

When executed on our prototype the following output is produced:

Assertion #1 checked successfully...

The history of variable X is: 7 11 5 3 7 8 9 3 13 2 45 8 754 45567 0

Example of an Assertion 2. Let’s write and check the assertion : “The value of variable X does not exceed 17.”

FOREACH *S: ex_stmt CONTAINS (D: destination IS X) FROM execute_program
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VALUE (D) < 17
ONFAIL
SAY(*Value * VALUE(D) ‘is assigned to the variable X in stmt ‘)
SAY (S)

SAY('This is record #’ CARD[ ex read_stmt FROM PREV_PATH(S)] % 1 ‘in the
file XX.TXT')

We check the assertion for all events where the value of X may be altered. These are events of the type destina-
tion which can appear within ex_assignment_stmt or ex_read stmt events. In order to make error mes-
sages about assertion violations more informative we include the embracing event of the type ex_stmt.
Metavariables S and D refer to those events of interest. When the assertion is violated for the first time, the assertion
evaluation terminates and current values of metavariables can be used for message output. The value of a metavariable
when printed by the SAY clause is shown in the form:

event-type:> event-source-text

Time= event-begin-time .. event-end-time

Event begin and end times in this prototype implementation are simply values of step counter.

Since we expect the assertion might be violated when executing a Read statement, it makes sense to report the
record number of the input file xx . txt where the assertion is violated. The program state does not contain any vari-
ables which values could provide this information. But we can perform auxiliary calculations independently from the
target program using FORMAN aggregate operations. In this particular case the number of events of the type
ex_read_stmt preceding the interruption moment is counted. This number plus 1 (since the violation occurs when
the read statement is executed) yields the number of an input record on which the variable X was first assigned the
value exceeding 17.

Assertion # 2 violation!

Value 45 is assigned to the variable X in stmt

ex_stmt :> Read( XX , X ) Time= 73 .. 78

This is record # 11 in the file XX.TXT

Example of a Query 3. Profile measurement. In order to obtain the actual number of statements executed, the fol-
lowing query can be performed:

TRUE
SAY (*The total number of statements executed is:’
CARD[ ALL ex_stmt FROM execute program ])

The ALL option in the aggregate operation indicates that all nested events of the type ex_stmt should be taken
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into account.
Assertion #3 checked successfully...

The total number of statements executed is: 18

Example of a generic assertion which must be true for any program in the target language.
“Each variable has to be assigned value before it is used in an expression evaluation.”
FOREACH * S: ex_stmt FROM execute_program

FOREACH * E: eval_expression CONTAINS v: ‘variable) FROM S

EXISTS D: destination FROM PREV_PATH(E) SOURCE_TEXT(D) = SOURCE_TEXT(V)

ONFAIL

SAY( ‘In event’ S)

SAY( ‘in expression evaluation’)

SAY(E)

SAY (‘uninitialized variable’ SOURCE_TEXT(V) ‘is used’)
For the following PASCAL program our prototype detects the presence of the bug described above.
program e2;
var X,Y: integer;
begin Y:= 3;

if Y < 2 then begin

else Y:= X - Y (*** here the error appears: X has no value! *=*x%)

end.

Assertion #4 violation!
In event ex_stmt :> If ( Y < 2 ) then X := 7 ; ¥ := (Y + X Y

else ¥ := (X - Y ) ; Time= 10 .. 35
in expression evaluation

eval_expression :> ( X - Y ) Time= 20 .. 29

uninitialised variable X is used
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Debugging rules can be considered as a way of formalizing reasoning about the target program execution --
humans often use similar patterns for reasoning when debugging programs. For example, if the index expression of an
array element is out of the range, the debugger can try a rule for eval-index events that invokes another rule about
wrong value of the event eval-expression, which in turn will cause investigation of histories of all variables included

in the expression.

Yet another application of generic assertions and debugging rules may be for describing run-time constraints
(sequences of procedure calls, actual parameter dependences, etc.) for nontrivial subroutine packages, e.g. for the
MOTIF package for GUI design. A library containing assertions and debugging rules relevant to such a package may

be useful for writing C programs calling subroutines from the package.

4 Conclusions

In brief, our approach can be explained as “computations over a target program event trace.” We expect the advan-

tages of our approach to be the following:

* The notion of an event grammar provides a general basis for program behavior models. In contrast with previous

approaches, the event is not a point in the trace but an interval with a beginning and an end.

* Event grammar provides a coordinate system to refer to any interesting event in the execution history. Program
variable values are attributes of an event’s beginning and end. Event attributes provide complete access to each
target program’s execution state. Assertions about particular execution states as well as assertions about sets of

different execution states may be checked.

 The PRECEDES relation yields a partial order on the set of events, which is a natural model for parallel program

behavior.
* The IN relation yields a hierarchy of events, so the assertions can be defined at an appropriate level of granularity.

* A language for computations over event traces provides a uniform framework for assertion checking, profiles,

debugging queries, and performance measurements.

* The access to the complete target program execution history and the ability to formalize generic assertions can be

used in order to define debugging rules and strategies.

The fact that assertions and other computations over target program event trace can be separated from the text of
the target program allows accumulation of formalized knowledge about particular programs and about the whole

target language in separate files. This makes it easy to control the amount of assertions to be checked.

According to [7] and [12] approximately 40-50% of all bugs detected during the program testing are logic, struc-
tural, and functionality bugs, i.e. bugs which could be detected by appropriate assertion checking similar to the dem-

onstrated above.
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Abstract. This paper suggests an approach to the development of software testing and debugging automation tools
based on precise program behavior models. The program behavior model is defined as a set of events (event trace) with
two basic binary relations over events -- precedence and inclusion, and represents the temporal relationship between
actions. A language for the computations over event traces is developed that provides a basis for assertion checking,
debugging queries, execution profiles, and performance measurements.

The approach is nondestructive, since assertion texts are separated from the target program source code and can be
maintained independently. Assertions can capture both the dynamic properties of a particular target program and can for-
malize the general knowledge of typical bugs and debugging strategies. An event grammar provides a sound basis for
assertion language implementation via target program automatic instrumentation. Event grammars may be designed for
sequential as well as for parallel programs. The approach suggested can be adjusted to a variety of programming lan-
guages.

Keywords. Program behavior models, events, event grammars, software testing and debugging automation

1 Introduction

Dynamic program analysis is one of the least understood activities in software development. A major problem is still
the inability to express the mismatch between the expected and the observed behavior of the program on the level 6f
abstraction maintained by the user [11]. In other words, a flexible and expressive specification formalism is needed to
describe properties of the software system’s implementation. Program testing and debugging is still a human activity per-
formed largely without any adequate tools and consuming more than 50% of the total program development time and
effort [10]. Debugging concurrent programs is even more difficult because of parallel activities, non-determinism and

time-dependent behavior.

One way to improve the situation is to partially automate the debugging process. Precise model of program behavior
becomes the first step towards debugging automation. It appears that traditional methods of programming language

semantics definition don’t address this aspect.

In building such a model several considerations were taken in account. The first assumption we make is that the model
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is discrete, i.e. comprises a finite number of well-separated elements. This assumption is typical for Computer Science
methods used for static and dynamic analysis of programs. For this reason the notion of event as an elementary unit of
action is an appropriate basis for building the whole model. The event is an abstraction for any detectable action per-
formed during the program execution, such as a statement execution, expression evaluation, procedure call, sending and

receiving a message, etc.

Actions (or events) are evolving in time and the program behavior represents the temporal relationship between actions.
This implies the necessity to introduce an ordering relation for events. Semantics of parallel programming languages and
even some sequential languages (such as C) don’t require the total ordering of actions. so partial event ordering is the

most adequate method for this purpose [18].

Actions performed during the program execution are at different levels of granularity, some of them include other
actions, e.g. a subroutine call event contains statement execution events. This consideration brings to our model inclusion
relation. Under this relationship events can be hierarchical objects and it becomes possible to consider program behavior

at appropriate levels of granularity.

Finally, the program execution can be modeled as a set of events (event trace) with two basic relations: partial ordering
and inclusion. The event trace actually is a model of program’s behavior temporal aspect. In order to specify meaningful
program behavior properties we have to enrich events with some attributes. An event may have a type and some other
attributes, such as event duration, program source code related to the event, program state associated with the event (i.e.

program variable values at the beginning and at the end of event), etc.

The next problem to be addressed after the program behavior model s set up is the formalism specifying properties of
the program behavior. This could be done in many different ways, e.g. by adopting some kind of logic calculi (predicate
logic, temporal logic). Such a direction leads to tools for program static verification, or in more pragmatic incarnations to
an approach called model checking [13]. As indicated in [1] “Dynamic analysis is limited to checking observed behaviors.

and so in principle provides weaker assurances. but this is balanced by checking a wider range of properties and typically
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by better performance ... .”

Since our goal is debugging automation, i.e. a kind of program dynamic analysis that requires different types of asser-
tion checking, debugging queries, program execution profiles, and so on, we came up with the concept of a computation
over the event trace. It seems that this concept is general enough to cover all the above mentioned needs in the unifying
framework, and provides sufficient flexibility. This approach implies the design of a special programming language for
computations over the event traces. We suggest a particular language called FORMAN [2]. [4], [16] based on functional

paradigm and the use of event patterns and aggregate operations over events.

Patterns describe the structure of events with context conditions. Program paths can be described by path expressions
over events. All this makes it possible to write assertions not only about variable values at program points but also about
data and control flows in the target program. Assertions can also be used as conditions in rules which describe debugging
actions. For example, an error message is a typical action for a debugger or consistency checker. Thus, it is also possible to

specify debugging strategies.

The notions of event and event type are powerful abstractions which make it possible to write assertions independent of
any target program. Such generic assertions can be collected in standard libraries which represent the general knowledge

about typical bugs and debugging strategies and could be designed and distributed as special software tools.

FORMAN is a general language to describe computations over program event trace that can be considered as an exam-
ple of a special programming paradigm. Possible application areas include program testing and debugging, performance
measurement and modeling, program profiling, program animation, program maintenance and program documentation

[6]. A study of FORMAN application for parallel programming is presented in (51

2 Events

FORMAN is based on a semantic model of target program behavior in which the program execution is represented by
a set of events. An event occurs when some action is performed during the program execution process. For instance, a

message is sent or received, a statement is executed, or some expression is evaluated. A particular action may be per-
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formed many times, but every execution of an action is denoted by a unique event,

Every event defines a time interval which has a beginning and an end. For atomic events. the beginning and end points
of the time interval will be the same. A events used for assertion checking and other computations over event traces must
be detectable by some implementation (e.g. by an appropriate target program instrumentation.) Attributes attached to

.

events bring additional information about évent context, such as current variable and expression values.

In order to give some support for our notion of event let us consider a well-known idea such as a counter. Usually the

history of a variable X when used as a counter looks like:

X=X~+1;..

endloop; ...

In order to check whether the actual behavior of the counter X matches the pattern described by the program fragment
above we have to consider the following events. Let Initialize_X denote the event of assigning 0 to the variable X.

Augment_X denote the event of incrementing X, and Assign_X denote an event of assigning any value to the variable X.

=

sequence A of all events of the type Assign_X from the event trace of program segment S has to be extracted preserving

the ordering between events, Second, A has to be matched with the pattern:

Initialize X (Augment_Xx) =

where’*” denotes repetition zero or more times. If the actual sequence of events does not match this pattern we can

report an error. Therefore, assertion checking can be represented as a kind of computation over target program event trace.

Another informal example involves parallel events. Let us suppose that Assign_Y denotes an event of assigning a value

to the shared variable Y through any of several parallel processes. Then, detecting a set of events of the type Assign Y
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that happen “at the same time” (i.e. are not under the precedence relation) may be evidence of 2 possible data-race condi-

tion in the program execution.

The program state (current values of variables) can be considered at the beginning or at the end of an appropriate event.
This provides the opportunity to write assertions about program variable values at different points in the program execu-

tion history.

Program profiling usually is based on counting the number of events of some type, e.g. the number of statement execu-
tions or procedure calls. Performance measurements may be based on attaching the duration attribute to such events and

summarizing durations of selected events.

3 Event Trace and the Language for Computations Over Event Traces
FORMAN is a high-level specification language for expressing intended behavior or known types of error conditions
when debugging or testing programs. It is intended to be used in conjunction with a high-level programming language

which is called the targer language.

The model of target program behavior is formally defined through a set of general axioms about two basic relations,
which may or may not hold between two arbitrary events: they may be sequentially ordered (PRECEDES), or one of them
might be included in another composite event (IN). For each pair of events in the event trace no more than one of these

relations can be established.

There are several general axioms that should be satisfied by any events a, b. ¢ in the event trace of any target program.

1) Mutual exclusion of relations.

PRECEDES b => not (a IN b) and not (b IN a)
INDb => not (a PRECEDES b) and not (b PRECEDES a)

[T

2) Noncommutativity.

PRECEDES b => not( b PRECEDES a)
INDb => not(b IN a)

oo
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3) Transitivity.

(2 PRECEDES b ) and ( b PRECEDES ¢ ) => ( a PRECEDES c)
(aINb)and(bINc)=>(aINc)

Irreflexivity for PRECEDES and IN follows from 2). Note that PRECEDES and IN are irreflexive partial orderings.
4) Distributivity

(a IN b) angd (b PRECEDES c) => (a PRECEDES c)
(a PRECEDES b) and (c IN b) => (a PRECEDES c¢)

(FOR ALL a IN b (FOR ALL ¢ IN 4 (a PRECEDES c¢) }) =» (b PRECEDES d)

message, receive-message) or by target language semantics (rendezvous. wait, put-message-in-queue).

The target program execution model is defined by an event grammar. The event may be a compound object and the
grammar describes how the event is split into other event Sequences or sets. For example, the event execute-assignment-
statement contains a sequence of events evaluate-right-hénd-pan and execute-destination. The evaluate-right-hand-part, in
turn, consists of an unique event evaluate-expression. The event grammar is a set of axioms that describe possible patterns

of basic relations between events of different type in the program execution history, it is not intended to be used for pars-

ing actual event trace.

Therulea :: ( B () establishes that if an event a of the type A occurs in the trace of a program, it is necessary that

events b and ¢ of types B and C, also exist, such that the relations b TN &, ¢ IN a, b PRECEDES c hold.

For example, the event grammar describing the semantics of a PASCAL subset may contain the following rules. The

40
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names, such as execute- program, and ex-stmt denote event types.

éxecute-program :: ( ex-stmt * )

This means that each event of the type €Xecute-program contains an ordered (w.r.t. relation PRECEDES)

sequence of zero or more events of the type ex-stmt,
eéx-stmt :: ( label? ( ex-assignment | ex-read-stmt | ex-write-stmt |
€x-reset-stmt | ex-rewrite-stmt | ex-close-stmt | ex-cond-stmt |
ex-loop-stmt | call-procedure) )

The event of the type ex-stmt contains one of the events eéx-assignment, ex-read-stmt , and so on. This
inner event determines the particular type of statement executed and may be preceded by an optional event of the type

label (traversing a label attached to the statement).
ex-assignment :: (ex-righthand-part destination)

The order of event occurrences reflects the semantics of the target language. When performing assignment statement
first the right-hand part is evaluated and after this the destination event occurs (which denotes the assignment event itself).

The event grammar makes F ORMAN suitable for automatic source code instrumentation to detect al] necessary events.

An event has attributes, for Instance, source text fragment from the corresponding target program, current values of tar-
get program variables and expressions at the beginning and at the end of event, duration of the event, previous path (i.e. set

of events preceding the event in the target program execution history), etc.

FORMAN supplies a means for writing assertions about events and event sequences and sets. These include quantifiers
and other aggregate operations over events, €.g., sequence, bag and set constructors, boolean operations and operations of

target language to write assertions on target program variables [3] f4].

Events can be described by patterns which capture the structure of event and context conditions. Program paths can be
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described by regular path expressions over events.

The main extension for the parallel case [5] consists of the introduction of a new kind of composite event -- “snapshot,”
which can be considered as an abstraction for the notion “a set of events that may happen at the same time.” The “snap-
shot” event is a set of events each pair of which is not under the relation PRECEDES and makes it possible to describe and

to detect at run-time such typical paralle] processing faults as data races and deadlock states.

All this makes it possible to formalize assertions of the following types:

* “all variables in the program must be initialized before using in some €xpression,”

* “file must be opened, then the read Statement is performed zero Or more times and after that the close statement is

executed,”

* “at least one variable changes its valye during one loop L iteration,”

* “deadlock for parallel processes P] and P2 is detected.”

In addition to debugging and testing, FORMAN can also be used to specify profiles and performance measurements.

order to detect and localize bugs. Rules can provide dialog to the user as well. An assertion is a boolean expression that

may contain quantifiers and sequencing constraints over events.

Assertions can be used as conditions in the rules describing actions that can be performed if an assertion is satisfied or
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violated. A debugging rule has the form:

assertion SAY (expression sequence)

ONFAIL SAY (expression Sequence)

The following examples have been executed on our prototype FORMAN/PASCAL assertion checker [3]. [4]). The PAS-
CAL program reads a Sequence of integers from file XX.TXT.

" Program el;
var X: integer;
XX: file of text;
begin

X:= 7;

(* initial value is assigned here =)
reset (XX, ‘XX.TXT') ;
while X<s0 do

read (XX, X)

end.

The contents of the file XX.TXT are as follows:
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1

The history of variable X is:

Example of an Assertion > Let’s write ang check the assertion

* "The valye of variable X does not exceed 17

FOREACH *s. ex_stmt CONTAINS (D: destination IS X) FROM €xecute_program VALUE(D) <17
ONFAIL

SAY(*Valye * VALUE(D) <js assigned to the variable Xin stmt *)

SAY(S)

AI2000.doc
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shown in the form:

event-type:> event-source-text

Time= event-begin-time .. event-end-time

Event begin and end times in this prototype implementation are simply values of step counter.

values could provide this information. But we can perform auxiliary calculations independently from the target program

using FORMAN aggregate operations. In this particular case the number of events of the type ex_read stmt preced-

ing the interruption moment is counted. This number plus 1 (since the violation occurs when the read statement is exe-

cuted) yields the number of an input record on which the variable X was first assigned the value exceeding 17.

Assertion # 2 violation!

Value 45 is assigned to the variable X in stmt

ex_stmt :> Read( XX , X ) Time= 73 .. 78

This is record # 11 in the file XX . TXT

Example of a Query 3. Profile measurement. In order to obtain the actual number of statements executed, the following
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query can be performed:

TRUE

SAY (‘The total number of statements executed isg:’

CARD[ ALL exX_stmt FROM éxecute_program ])

The ALL option in the aggregate operation indicates that all nested events of the type ex stm= should be taken into
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account,

Assertion #3 checked successfully. ..

The total number of statements executed is: 18

Example of a generic assertion which must be true for any program in the target language.

“Each variable has to be assigned value before it is used in an €xpression evaluation.”

FOREACH * S: ex_stmt FROM execute_program

FOREACH * E: eval_expression CONTAINS (V: variable) FROM S

EXISTS D: destination FROM PREV_PATH(E) SOURCE_TEXT(D) = SOURCE_TEXT(V)

ONFAIL

SAY( ‘In event’ S)

SAY( ‘in expression evaluation®)

SAY(E)

SAY(‘uninitialized variable’ SOURCE_TEXT(V) ‘is used’)

For the following PASCAL program our prototype detects the presence of the bug described above.

pProgram e2;

var X,Y: integer;

begin Y:= 3;

if Y < 2 then begin
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Xi= 7; Y:= Y + X
else Yi= X - Yy (%%x here the error appears: X has no value! * k)

end.

Assertion #4 violation!

Ineventex__stmt :>If(Y<2)thenX:=7;Y:=(Y+X);

else Y := (x - vy ) i Time= 10 .. 35
in expression evaluation
eval_expression :> ( X - v ) Time= 20 .. 29

uninitialised variable X is used

Debugging rules can be considered as a way of formalizing reasoning about the target program execution -- humans
often use similar patterns for reasoning when debugging programs. For example, if the index expression of an array ele-
ment is out of the range, the debugger can try a rule for eval-index events that invokes another rule about wrong value of

the event eval-expression, which in turn wil] cause investigation of histories of all variables included in the expression.

Yet another application of generic assertions and debugging rules may be for describing run-time constraints
(sequences of procedure calls, actual parameter dependences, etc.) for nontrivial subroutine packages, e.g. for the MOTIF
package for GUI design. A library containing assertions and debugging rules relevant to such a package may be useful for

writing C programs calling subroutines from the package,

5 Related Work

What follows is a very brief survey of basic ideas known in Debugging Automation to provide the background for the
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approach advocated in this paper.

5.1 Event Notion

distinguish events. EBBA defines two higher level means for modeling system behavior -- clustering and filtering. Clus-
tering is used to express behavior as composite events, i.e. aggregates of previously defined events. Filtering serves to

eliminate from consideration events which are not relevant to the model being investigated. Both event recognition and fil-

tering can be performed at run-time.

An event-based debugger for the C programming language called Dalek [23] provides a means for description of user-

defined events which typically are points within a program execution trace. A target 'program has to be instrumented in

supports design of universal assertions and debugging rules that could be used for debugging of arbitrary target programs.

event notion in previous approaches where events are considered pointwise time moments.

The COCA debugger [14] for the C language uses the GDB debugger for tracing and PROLOG for debugging queries
execution. It provides a certain event grammar for C traces and event patterns based on attributes for event search. The
query language is designed around special primitives built into the PROLOG query evaluator. We assume that FORMAN

is more suitable for trace computations as it has been designed for this specific purpose.

5.2 Path Expressions

Data and control flow descriptions of the target Program are essential for testing and debugging purposes. It is useful to
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nique has been used in several projects as a background for high-level debugging tools, (e.g.in [11]), where path rules are
suggested as kinds of debugger commands. FORMAN provides flexible language means for trace specification including

event patterns and regular expressions over them.

53 Assertion Languages
Assertion (or annotation) languages provide yet another approach to debugging automation. The approaches currently
in use are mostly based on boolean expressions attached to selected points of the target program, like the assert macro in

S

C. The ANNA [20] annotation language for the Ada target language supports assertions on variable and type declarations,

Tasks. Patterns can be written which involve parameter values of Task entry calls. Assertions are written in Ada itself,
using a number of special pre-defined predicates. Assertion-checking is dynamic at run-time, and does not need post-mor-

tem analysis. The RAPIDE project [21] provides a reach event-based assertion language for software architecture descrip-

tion.

In [7] events are introduced to describe process communication, termination. and connection and detachment of pro-
cess to channels. A language of Behavior Expressions (BE) is provided to write assertions about sequences of process
interactions. BE is able to describe allowed Sequences of events as well as some predicates defined on the values of the
variables of processes. Event types are process communication and interactions such as send, receive, terminate, connect,

detach. Evaluation of assertions are done at run-time. No composite events are provided.

Another recent experimental debugging tool is based on trace analysis with TeSpect to assertions in temporal interval
logic. This work is presented in [17] where four types of events are introduced: assignment to variables, reaching a label,
Interprocess communication and process Instantiation or termination. Composite events cannot be defined. Different vari-

eties of temporal logic languages are used for program static analysis called Model Checking [13].
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The FORMAN language for computations over traces provides flexible means for writing both local and global asser-

tions, including those about temporal relations between events.

54 Algorithmic Debugging
The original algorithmic program debugging method was introduced in [28] for the Prolog language. In [27] and [15]

this paradigm is applied to a subset of PASCAL.

The debugger executes the program and builds a trace execution tree at the procedure level while saving some useful
trace information such as procedure names and input/output parameter values. The algorithmic debugger traverses the
execution tree and interacts with the user by asking about the intended behavior of each procedure. The user has the possi-
bility to answer “yes” or “no” about the intended behavior of the procedure. The search finally ends and a bug is localized
within a procedure p when one of the following holds: procedure P contains no procedure calls. or al] procedure calls per-

formed from the body of procedure p fulfill the user's expectations.

Algorithmic debugging can be considered as an example of debugging strategy, based on some assertion language (in
this case assertions about results of a procedure call.) The notion of computation over execution trace introduced in FOR-

MAN may be a convenient basis for describing such debugging strategies.

6 Conclusions

In brief, our approach can be explained as “computations over a target program event trace.”” We expect the advantages

of our approach to be the following:

* The notion of an event grammar provides a general basis for program behavior models. In contrast with previous

approaches, the event is not a point in the trace but an interval with a beginning and an end.

* Event grammar provides a coordinate System to refer to any interesting event in the execution history. Program variable

2

values are attributes of an event’s beginning and end. Event attributes provide complete access to each target

program’s execution state. Assertions about particular execution states as well as assertions about sets of different
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execution states may be checked.

* The PRECEDES relation yields a partial order op the set of events, which is a natural model for paralle] program

behavior,

* The IN relation yields a hierarchy of events, so the assertions can be defined at an appropriate level of granularity.

* A language for computations over event traces provides a uniform framework for assertion checking, profiles,

debugging queries, and performance measurements,

* The access to the complete target program execution history and the ability to formalize generic assertions can be used

in order to define debugging rules and strategies.

The fact that assertions and other computations over target program event trace can be separated from the text of the
target program allows accumulation of formalized knowledge about particular programs and about the whole target

language in separate files. This makes it €asy to control the amount of assertions to be checked.

According to [9] and [24] approximately 40-50% of al] bugs detected during the program testing are logic, structural,
and functionality bugs, i.e. bugs which could be detected by appropriate assertion checking similar to the demonstrated

above.

It appears that the approach initially designed for program behavior modeling may be used in other dynamic system
behavior models as well. The methodology is based on identifying event types representing essential actions performed
within the system, and defining the basic relations PRECEDES and IN for those events (event grammar), and appropriate
event attributes. Then the F ORMAN-like language for computations over event traces may be developed to specify behav-

ior properties, to perform queries and other kinds of dynamic analysis.

This work was supported in part by NSF grant #9810732.
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Static Analysis for Program Generation Templates’
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Abstract

This paper presents an approach to achieving reliable cost-effective software via automatic program
generation patterns. The main idea is to certify the patterns once, to establish a reliability property for all
of the programs that could possibly be generated from the patterns. We focus here on properties that can
be checked via computable static analysis. Examples of methods to assure syntactic correctness and
exception closure of the generated code are presented. Exception closure means that a software module
cannot raise any exceptions other than those declared in its interface.

1. Introduction

Our goal is to provide cost effective means for creating reliable software. We are addressing the
issue by improving the technology for automatic software generation, with particular attention to
reliability issues.

We take a domain specific view of this process: a domain is a family of related problems addressing
a common set of issues. A domain analysis identifies the problem and issues, formulates a model of these,
and determines a corresponding set of solution methods. Users of the proposed computer-aided software
generation system describe their particular problem using a domain specific problem modeling language
that provides concrete representations of problems in the domain. The system then automatically
determines which solution methods are applicable, customizes them to the specific problem instance
described using the modeling language, and then automatically generates a program that will solve the
specified problem.

We seek to provide tool support for the above process that can be applied to many different problem
domains, and that can generate code in any programming language. Therefore we seek uniform and
effective methods for generating software generators of the type described above, given definitions of the
problem modeling language, the target programming language, and the roles for synthesizing solution
programs. A simple architecture for this process is shown in Figure 1.

The specific goals of this paper are: (1) to provide a simple example of a language for expressing
software patterns that are specific enough to be used as synthesis rules and (2) to provide examples of
static rules in this language. We address the problems of certifying that all programs which can be
generated from a given set of rules: (1) are syntactically correct and (2) will not raise any exceptions other
than those explicitly specified in an interface description.

This is a step towards a coordinated system of static and dynamic checks, to be performed on
program synthesis rules. Our hypothesis is that the most cost effective way to improve software quality is
to systematically improve and certify the rules used to generate a domain-specific software generator.
This approach directly addresses the issue of correctly implementing given software requirements. It also
indirectly addresses the issue of getting the right requirements, because it should eventually enable rapid
prototyping of product quality systems by problem domain experts, who need not be software experts. If
the requirements are found to be inappropriate, the domain experts will simply update the problem models
and regenerate a new version of the solution software.

We will refer to the software generation patterns as templates. Our rationale for the claim of cost
effectiveness is that the benefits of quality improvements to the templates can be extended to all past and
future applications of the generators - by regenerating the generator using the improved templates and
then regenerating the past applications. The regeneration process can be completely automated, thereby
reducing labor costs, eliminating a source of random human errors, and speeding up the process of
repairing a known fault throughout a large family of software systems.

! This research was supported in part by the U. S. Army Research Office under contract/grant number
35037-MA and 40473-MA, and in part by DARPA under contract #99-F759.
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The relation to the theme of this workshop is that fast moving scenarios can be addressed by
automatically generating new variants of the software that reflect changing issues in the problem domain.
Our approach should reduce the explicit quality assurance efforts needed each time the software is
changed. By amortizing the quality assurance effort applied to the template over many applications of the
same templates, we can reduce quality assurance costs. The benefits increase with the number of systems

generated from the same templates.

STMT. Language

Problem

Target Lang.

Model

y y

Attribution
Rules Analyzer Synthesizer
Generator Generator
Rule yenerator-
Lan guage (Generator
Software
@ Analyzer Synthesizer Solution
Problem Taroet
Statement Program Generator S ]
Lansuave Implementation
guag Language

Figure 1. Model-Based Software Generator Architecture

This paper focuses on static checks that can be completely automated. Our research is also addressing
testing and debugging of program synthesis rules and proofs of rule properties that require human
assistance with deeper reasoning. These efforts are outside the scope of the current paper, which is

organized as follows:

® Section 2 formalizes software generation patterns and defines a uniform construction to
obtain a template language for any target programming language.
e Section 3 describes methods for statically certifying syntactic correctness generated code,

and gives an example.

e  Section 4 does the same for analysis of exceptions.
Section 5 contains comparisons to previous work
e  Section 6 presents conclusions.

2. Template Languages

The purpose of a template language is to define software synthesis patterns for a given target
language. We create such languages based on a functional object model of code generation templates. We
take a functional (i.e. side-effect-free) approach because this simplifies the algebraic basis of the approach
and supports effective static analysis methods such as those presented in Section 3 and 4. '
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We view template languages as extensions of the corresponding target programming languages.
Because many different programming languages are created, we will need many different template
languages. However, all of these can be defined at once by providing uniform construction such as that
shown in Figure 2.

This is a very simple construction, but it is very expressive. In addition to providing substitution of
actual values for generic parameters, as in the generic units of Ada and the templates of C++, our
construction includes conditionals that are evaluated at code generation time, and the ability to invoke
other templates. Recursion is included.

Template_language = {template, formal _def, template_expression}

DEF_TEMPLATE(id[template], type, seq[formal_def], template_expression):
template  -- where type ° € target_language

DEF_FORMAL(template_parameter, type): formal_def
-- declares the type of a formal parameter

template_parameter < {id[any], template_expression}

IF(template_expression, template_expression, template_expression):
template_expression

APPLY(id[template], seq[template_expression]): template_expression

template_expression < target_language

Figure 2. Template Abstract Syntax

The construction depends heavily on the use of inheritance in object-oriented modeling of
programming languages. The situation is illustrated in Figure 3.

Figure 3. Generic Template Language

In object-oriented modeling, class-wide types” are viewed as open and extensible. Specifically, each
time we add a subclass with a new constructor, we add more instances to the class-wide type, thus
extending its value set.

We model the abstract syntax of a language using a type for each kind of semantic entity. In a
properly constructed abstract syntax, there should be one such type for each non-terminal symbol. Each
constructor of these types corresponds to a production of the grammar. Subclass relationships, denoted by
"<", specify that every instance of the subclass is also an instance of the parent class. Multiple inheritance
is allowed. For example, in line 6 of Figure 2 says that every template parameter is a kind of identifier,
and also is a kind of template expression. This kind of subclass relationship is used to incorporate
reusable types in a library of programming language building blocks, such as identifiers, and to specialize
reusable concepts to the application, such as template expression. If T is a type and S is a set of types,
T<S means T is a subclass of each element of S. This represents multiple inheritance.

* This is Ada 95 terminology. The instances of a class wide type include its direct instances and those of
all its subclasses, transitively.
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Subclassing is also used to interface between a target programming language and its extensions. In
Figure 2, "target-language” denotes the set of types comprising the abstract syntax of the target language.
Figure 4 shows a very simple example of a target language that illustrates how this works.

target_language = (stmt, exp)

assign(var, exp): stmt
if(exp, stmt, stmt): stmt

integer <exp -- integer literals
var < {id[any], exp} -- program variables
apply(id[function], seq[exp]): exp -- operations

subtype rule: x <y ==>id[x] <id[y] where x,y € type

Figure 4. Example: Micro Target Language

The example in Figure 5 defines a code generation pattern that embodies Newton’s method for
polynomial evaluation, which is optimal in terms of number of evaluation steps needed. This is a very
simple example of a code generation pattern that is nevertheless realistic, because it embodies a solution
method. The example also illustrates the use of all the constructs in the template language. We use infix
syntax for the exp constructors * and + to improve legibility (e.g- x*y is short for the term apply(*, x, y)).

An additional benefit of considering the abstract syntax to be an algebra rather than a tree is that we
can used well-studied transformation rules. In particular we can associate equational axioms with the
programming language types that define normal forms. Figure 5 illustrates the use of such axioms as
rewrite rules that simplify the code produced by the generator in a follow-on normalization process. This
is one way to incorporate optimizations into the program generation process, which is useful for
unconditional transformations.

TEMPLATE evaluate_polynomial (v: var, ¢: seq[integer]): exp
-- ¢ contains coefficients of a polynomial, lowest degree first
IF not (is_empty (c) ) -- use operations of boolean and seq
THEN v * (evaluate_polynomial (v, rest(c))) + first (c)
ELSE 0

END TEMPLATE

Template application evaluate-polynomial(x, [1, 2, 3]) generates
X*¥X*x*0+3)+2)+1

Normalization with integer rules i * 0 = 0, i + 0 = i reduces to
x**3+2)+1

Figure 5. Example: Generation Pattern

Code generation using the template language is a very much like evaluation in a functional
programming language with call-by-value semantics. Analysis of templates can take ‘advantage of
equational reasoning, substitution, and structural induction. The limitation to primitive recursion
facilitates the latter. The recursion in the example is structural because rest is a partial inverse for the
sequence constructor add (i.e. rest(add(x, s)) = s).

3. Svntactic Correctness of Generated Code

We treat the abstract syntax structures of the target language as the values of the abstract data types
representing the programming language. We require these types to provide a pretty printing operation that
outputs such objects as text strings according to the concrete syntax of the target language, with a
readable format. Establishing correctness of these pretty printing operations is straightforward, and in fact
their implementations can be generated from an appropriately annotated grammar for the concrete syntax.

Given trusted pretty printing operations for the object model of the target language, syntactic
correctness of the output reduces to the type-correctness of the ground terms generated by the evaluation
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of the templates. This can be checked using a simple type system for the template language and
conventional type checking methods. Note that we are referring to the types associated with the signatures
of the constructors in the object model of the target programming language, rather than the types within
the target programming language, which may not even be a typed language. The process is illustrated
Figure 6. The computed type annotations are shown in italics. The type annotations associated with the
implicit induction step, where the type signature of the template itself is used, is highlighted in bold
italics. The indentations of the type annotations reflect the structure of the derivation.

TEMPLATE evaluate_polynomial (v: var, ¢: seq[integer]): exp
IF not (is_empty (c : seqfinteger] ) : boolean ) : boolean
THEN +( *(v :var,
evaluate_polynomial
v :var,
rest(c: seq[integer] ) : seqfinteger]) : exp
) jexp
first (c: seq[integer] ) :integer
) cexp
~-term form of v* evaluate_polynomial (v, rest(c)) + first (c)
ELSE 0 ¢ :integer
END TEMPLATE

Types conform because integer < empvar < exp

Relevant signatures: +(exp, exp) :exp, *(exp, exp) :exp,
first(seq[T]): T, rest(seq[T]): seq[T],
is_empty(seq[T]): boolean, not(boolean): boolean

Figure 6. Example: Syntactic Correctness of Generated Code

Note that induction has been carried out implicitly, as a routine step of the type checking calculation.
This is sufficient to establish partial type correctness of the templates, which implies syntactic correctness
of all code that could be generated by the template, it does not automatically guarantee total correctness,
because we still have the possibility that evaluation of the template might fail to terminate.

Total correctness is established by the type check if we check that all recursions are primitive. The
example satisfies this condition because rest is a partial inverse of the compound sequence constructor;
rest(add(x,s)) = s. This means that the induction is in fact structural, and hence that evaluate_polynomial
is total. Thus the template will produce syntactically correct code for all input values that conform to the
type signature of evaluate_polynomial.

We note that given declarations of the target language constructors that define the abstract syntax and
the corresponding partial inverse operations, it is straightforward to automatically check that all recursive
calls are primitive with respect to any given parameter position. This implies that structural induction can
be applied uniformly and completely automatically in this context. Furthermore, our experience suggests
that structural recursions are sufficient to define the code generation templates needed in practice, and that
template designers can live within the restriction to structural recursions without undue hardships.

4. Exception Closures for Generated Code

One common source of software failure is unhandled exceptions. This section explains a method for
certifying that all programs generated from a given template cannot generate any unhandled exceptions
when placed in a context that handles a specified set of exceptions. :

Our approach is to refine the type system to record the set of exceptions that might be raised by the
evaluation of any expression of the target language. A similar structure can be used to analyze the set of
exceptions that might be raised by execution of a statement of the target language.
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The refinement replaces the single target language type exp with a parameterized family of types
exp[set[exception]]. The intended interpretation of this type structure is that evaluation of an expression
of type exp[S] might raise an exception e only if e€ S. Since we do not require all exceptions in S to be
producible, this family of types has a rich subclass structure defined by the following relation:

S1c 82 = exp[S1]<exp[S2]

The type signatures of an operation are specified explicitly for argument expression type that cannot
raise any exceptions, and are extended to all other types by the following rule, which describes the
essential pattern for propagating exceptions:

F(exp[]) : exp[S1] = f(exp[S2]): exp[S1 L S2]

The rule for operations with multiple arguments is similar. Similar rules apply to language constructs
representing exception handlers. Exception handlers follow rules of the form

(TRY exp[S1] CATCH e USE exp[S2]): exp[(S1-{e}) L S2].

Figure 7 shows the exception analysis for our running example. The parts added to the version in
Figure 6 are underlined.

TEMPLATE evaluate_polynomial (v: var, c: seq[integer]): exp [ {ovfl}]
IF not (is_empty (c: seglintegerlboolesn boolean
THEN +(*(v: var
evaluate_polynomial(v: var,
rest(c: seqlintegerkeylfintegel ) exp [{ovfl}]
first (c: segl[integerlintegkr exd {ov£l}]
-- term form of v * evaluate_polynomial (v, rest(c)) + first (c)
ELSE 0: integer
END TEMPLATE

Types conform because integer < exp [&] < exp[ {ovfl}] and
var<exp[Jd] <exp[{ovEl}]

Relevant signatures: +(exp, exp): exp [{ov£1}1, *(exp, exp): exp [{ovEfl}],
first(seq[T]): T, rest(seq[T]): seq[T], is_empty(seq[T]): boolean, , not(boolean): boolean

Figure 7. Exception Closure of Generated Code

Note that we require the author of the template to specify in the type declaration of a template the set
of exceptions the generated expression is allowed to raise. This acts as an induction hypothesis in our
exception analysis, which is used when analyzing the recursive call of evaluate-polynomial. It also
provides useful information for the user of the generated code.

The analysis shown in the figure establishes a partial exception closure: it guarantees that all
expressions generated by the template can at most raise only the exception ovfl representing integer
overflow.

To establish a total exception closure, we have to address clean termination of the template expansion
at program generation time. The primitive recursion check explained in the previous section guarantees
there will be no infinite recursions, so that termination is guaranteed. However, for clean termination, we
must also check that evaluation of the template will not raise any exceptions at program generation time.

Note that the analysis in Figure 7 addresses run-time exceptions. When viewed as constructors of the
abstract syntax, + and * are total operations. Overflow exceptions can occur only when those expressions
are evaluated, not when they are constructed.
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The sequence operators first and rest are different: they are partial query methods of the abstract
Syntax, not total constructors. If applied to an empty sequence, they raise a sequence underflow exception.
However, this can occur only at program generation time, not at run time.

To certify clean termination of template at program generation time requires a type refinement to
record sets of possible exceptions and an additional kind of type refinement to record domains of partial
methods such as first and rest. We can introduce a subtype nseq[T, S] < seq[T, S] consisting of the
nonempty sequences, and refine the signatures of the partial sequence operations first and rest as follows.

first(nseq(T, 2): T[D], rest(nseq[T, B]): seq[T, %]
first(seq[T, &1): T[seq_underflow], rest(seq[T, )): seq[T, {seq_underflow}]

Type analysis requires a bit of inference in this case, because we have to use the guard of the
template language conditional IF together with the rule

s : seq[T, S] and not is-empty (s) = s: nseq[T, S]
This inference is easy because the guard matches the subtype restriction predicate for nseq[T].

This match did not occur by accident - the purpose of the guard is precisely to ensure that the
operations first and rest are used only within their domain of definition. In the interests of being able to
produce certifiably robust code, we claim that it would not be unduly burdensome to require that template
designers associate domain predicates with all partial operations, and use those domain predicates
explicitly in guards whenever they are needed to ensure the partial operators are used within their proper
domains of definition. For example, first could be associated with a domain predicate

first-ok (seq[T]) : boolean where
first-ok (s) = not (is-empty (s)).

This would enable a fast and shallow analysis of guard conditions to certify absence of exceptions in
cases like this. Some such restriction is necessary for practical engineering support because the problem
of checking whether an unconstrained guard condition implies the domain predicates of arbitrary guarded
partial operations is undecidable.

An alternative is an exception analysis that includes exceptions in the closure even in cases where the
guard condition ensures they will never arise. We suggest that it is more practical to handle a common
subset of efficiently recognizable forms, and to ask designers to work within the constraints of those
recognizable forms. We believe this would be less burdensome than the alternative of manually analyzing
the cases where a type check insensitive to guard conditions would nominate exceptions that cannot in
fact occur, and that it would lead to a more robust software by making it practical to do complete analysis
of exception closures. For example, we could require the example of Figure 7 to be written in a stylized
form that looks like the following:

IF first-ok (c) and rest-ok (c)
THEN ... first (c) ... rest (c) ...

A similar type check would have to be applied to the implementations of first and rest to ensure that they
would in fact terminate cleanly whenever the domain predicates are true.

S. Comparisons to Previous Work

One of our contributions has been to formalize and abstract the idea of a program generation pattern,
to make it independent of the details of the target programming language and the process of instantiating
the patterns. The purpose of this was to create context in which systematic analysis of program
generation patterns becomes possible and in some cases becomes decidable,

Program generation patterns have been evolving for a long time. Macros are an early form of the
idea. However, macros are notoriously difficult to analyze, partially because they traditionally operate on
uninterpreted text. This makes the connection between macro definitions and the behavior they
ultimately denote complicated and potentially very indirect. The macros in LISP are an improvement
because they are based on abstract syntax trees rather than characters. However, in this context a second
source of complexity becomes apparent: a macro can expand to produce another macro, and the number
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The sequence operators first and rest are different: they are partial query methods of the abstract
syntax, not total constructors. If applied to an empty sequence, they raise a sequence underflow exception.
However, this can occur only at program generation time, not at run time.

To certify clean termination of template at program generation time requires a type refinement to
record sets of possible exceptions and an additional kind of type refinement to record domains of partial
methods such as first and rest. We can introduce a subtype nseq[T, S] < seq[T, S] consisting of the
nonempty sequences, and refine the signatures of the partial sequence operations first and rest as follows.

first(nseq[T, B]): T[D], rest(nseq[T, B]): seq[T, D]
first(seq[T, D)): T[seq_underflow], rest(seq[T, @]): seq[T, {seq_underflow}]

Type analysis requires a bit of inference in this case, because we have to use the guard of the
template language conditional IF together with the rule

s : seq[T, S} and not is-empty (s) = s: nseq[T, S]
This inference is easy because the guard matches the subtype restriction predicate for nseq[T].

This match did not occur by accident - the purpose of the guard is precisely to ensure that the
operations first and rest are used only within their domain of definition. In the interests of being able to
produce certifiably robust code, we claim that it would not be unduly burdensome to require that template
designers associate domain predicates with all partial operations, and use those domain predicates
explicitly in guards whenever they are needed to ensure the partial operators are used within their proper
domains of definition. For example, first could be associated with a domain predicate

first-ok (seq[T]) : boolean where
first-ok (s) = not (is-empty (s)).

This would enable a fast and shallow analysis of guard conditions to certify absence of exceptions in
cases like this. Some such restriction is necessary for practical engineering support because the problem
of checking whether an unconstrained guard condition implies the domain predicates of arbitrary guarded
partial operations is undecidable.

An alternative is an exception analysis that includes exceptions in the closure even in cases where the
guard condition ensures they will never arise. We suggest that it is more practical to handle a common
subset of efficiently recognizable forms, and to ask designers to work within the constraints of those
recognizable forms. We believe this would be less burdensome than the alternative of manually analyzing
the cases where a type check insensitive to guard conditions would nominate exceptions that cannot in
fact occur, and that it would lead to a more robust software by making it practical to do complete analysis
of exception closures. For example, we could require the example of Figure 7 to be written in a stylized
form that looks like the following:

IF first-ok (c) and rest-ok (c)
THEN ... first (c) ... rest (c) ...

A similar type check would have to be applied to the implementations of first and rest to ensure that they
would in fact terminate cleanly whenever the domain predicates are true.

5. Comparisons to Previous Work

One of our contributions has been to formalize and abstract the idea of a program generation pattern,
to make it independent of the details of the target programming language and the process of instantiating
the patterns. The purpose of this was to create context in which systematic analysis of program
generation patterns becomes possible and in some cases becomes decidable.

Program generation patterns have been evolving for a long time. Macros are an early form of the
idea. However, macros are notoriously difficult to analyze, partially because they traditionally operate on
uninterpreted text. This makes the connection between macro definitions and the behavior they
ultimately denote complicated and potentially very indirect. The macros in LISP are an improvement
because they are based on abstract syntax trees rather than characters. However, in this context a second
source of complexity becomes apparent: a macro can expand to produce another macro, and the number
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of expansion steps before the generated source code actually appears is potentially unbounded. This
makes the system very difficult to analyze. At the other extreme are the generic units of Ada. These are
strongly typed, clearly connected to the abstract syntax of the language, and the results of instantiating
them are easy to analyze. However, they do not allow conditional decisions at instantiation time, and are
restricted in the sense that the abstract syntax trees of all possible instantiations have exactly the same
shape, up to substitution for the formal parameters of the pattern. A language-independent version of the
idea can be found in [5], although this appears to be largely text-based.

Another aspect of our approach is to model languages as algebras rather than as abstract syntax trees.
A hint of this idea appears in [4], although it is not exploited there for enabling analysis to any significant
degree. The work of the CIP group [1] develops this idea further and takes advantage of the reasoning
structures that come with the algebraic modeling approach, such as term rewriting and generation
induction principles. This suggests extension to a full object-oriented view, which includes inheritance.
The Refine system is the earliest context we know of where grammars are treated as object models with
potential inheritance structures, although the documentation does not give any hint about the significance
of this capability. In this paper we demonstrate the usefulness of algebraic models of syntax with
inheritance, for defining language extension transformations that can be applied to all possible target
languages.

Another theme is lightweight inference [2]. We have demonstrated that some useful types of static
analysis for program generation patterns can be performed via computable and indeed reasonably
efficient methods. The processes described here can be implemented using technologies typically used in
compilers, such as object attribution rules, they terminate for all possible inputs, and do so in polynomial
time. We believe this approach will scale up to large applications, and are currently working out the
details to support a tight analysis of the efficiency of the process.

This paper has explored static analysis of meta-programs to check syntactic correctness and
exception closure of the generated code. Another kind of static analysis in this family, type checking of
meta-programs to ensure the type correctness of the generated code, is considered by another paper in this
proceedings [3].

6. _Conclusions

We believe that formal models of program generation templates can support a variety of quality
improvement processes that can help achieve cost-effective software reliability. This paper has presented
a simple example of such a formal model and two such quality improvement processes, certification of
syntactic correctness and freedom from unexpected exceptions for all programs that can be generated
from a given program generation pattern. We expect the greatest advantages of this approach to be
realized when it is applied to realize flexible and reliable systems in a product line approach. This
approach should be augmented with systematic methods for domain analysis that culminates in the
development of a domain-specific library of solutions embodied in a domain-specific software
architecture that is populated with components produced by model-based software generators. When the
technology matures, it should become possible for problem domain experts to specify their problem
instances in terms of familiar problem domain models, and to have reliable software solutions to their
problems automatically generated, without direct involvement of computer experts.

The economic advantage of this approach comes from the ability to automatically reap the benefits of
each quality improvement for all past and future instantiations of the template (if past applications are
regenerated). We believe that it will be profitable to explore methods for lifting many known program
analysis techniques from the level of individual programs to the level of program generation patterns.
This should be explored for a variety of issues that range from certifying absence of references to
uninitialized variables, absence of deadlock, and many others, perhaps ultimately to template-based proof
of post conditions and program termination for generated programs.

To make this vision practical, many engineering issues must be addressed, including presentation
issues, methods for lightweight inference [2] and support for transforming and enhancing complex sets of
analysis rules. Other issues include systematic methods for dynamic analysis, testing, and debugging of
program generation rules. It is not reasonable to expect progress to occur in an instantaneous quantum
leap to perfection. A realistic process is a gradual one, where simple sets of program generation rules are
deployed, and gradually tuned, improved, certified, and extended. A key issue is enabling rule
enhancement and exception closure extension without invalidating all previous effort on analysis and
certification of the previous versions.

64



The difference between the program generation approach proposed here and current compiler

generation tools is the associated static analysis capabilities for the program generation rules. It is
possible that in the future, ultra-reliable compilers will be built using techniques derived from those
introduced in this paper.
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Abstract: This paper aims at structurising detection of
different types of Stuck-at faults for a wide range of
Multistage Interconnection Networks (MINs). The results
reported so far in this respect are mainly based on direct
combinatorial analysis of the concerned networks with
very little consideration towards the modelling aspects.
The graphical representation coupled with well-defined
semantics allowing formal analysis has already established

‘Petri Net as an effective tool for modelling dynamic

systems. However, the existing variants of high level nets
had certain limitations in modelling the dynamic behaviour
of mapping a permutation through MIN and further
analysis of the same. This has inspired the authors to
propose a couple of new high level net model, called MP-
net and S-net in their earlier works. The S-net model uses
tokens to hold and propagate information apart from
controlling firing of events. It uses two different types of
places and transitions each as has been defined
subsequently. In this paper, we have concentrated in
detection of fault in MINs using this S-net model.

Keywords
Petri Net, MIN, Stuck-at-fault, S-net, Data Place,
Control Place

L Introduction

Generalized Stochastic Petri Net (GSPN) is a performance
analysis tool [11] based on the graphical system
representation typical of Petri nets, in which some
transitions are timed, while others are immediate.
Distributed, parallel and real time systems may be
modelled using this GSPN. However, for any large system
comprising of large number of components the time
distributions and relations between components are often
quite complex [07, 08]. This largeness and complexity is
reflected in the corresponding GSPN models.

The capability of incorporating time as a parameter in net
based models have been taken care of with the
introduction of Time Petri Nets [13] and Timed Petri Nets
[12, 14, 15]. The Timed Petri nets are derived from Petri
nets by associating a finite firing duration with each
transition. The classical firing rule of Petri nets is thus
modified to account for the time taken to fire a transition
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and also to express that a transition must fire as soon as it
is enabled. Time Petri Nets (TPN) are more general in the
sense that a Timed Petri net can be modelled by using
Time Petri net, but the reverse is not true. For both of these
models, firing of a transition is a non-atomic operation.
The firing is said to be in progress in between a start firing
event and an end-firing event.

In the context of MINs, binary values are used to represent
information pertaining to data as well as control. A study
of different variants of high level nets, as discussed above,
indicates that for modelling different processing elements
of distributed computation, some additional flexibility is to
be incorporated in the basic modelling tool to take care of
variations in structures and functionality of these hardware
elements.

In the Modified Petri Net (MP-net) model [03], as defined
by us earlier, two different types of Places and Transitions
are used [03]. The MP-net model for a NxN network
consisting of O(log,N) stages would involve O(Nlog,N)
number of subnets, one each for every 2x2 cross-bar
switch that constitute the MIN. The total number of Data
and Control places as well as the number of Controlled
transitions will therefore be O(Nlog,N). This would lead to
an unmanageable and complex situation for the description
of a large system. Thus it has been felt that the proposed
MP-net model requires further compactness. The
Stochastic behavior of MP-net is coupled with the
properties of Colored Petri net [10] to propose a new
powerful high level net called S-net. It has been achieved
by equipping each token with an attached data value called
the Token color. In S-net, there has been a significant
improvement in total number of places as well transitions
comparing Mp-net. Both redundant path MINs like Benes
and non-redundant path MINs like Omega or Baseline
have been modelled using S-net [01]{03].

Essentially, a variant of Coloured and Stochastic nets, the
S-net has been established as an ideal tool for modelling
any element that has to handle two different types of
signals in repetitive, modular units. It has been already
used to model different types of MINs, e.g. Omega, Benes,
Baseline networks, etc [03]. It has also been found that
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using S-net, a MIN of NxN size can be modelled with
3N/2 number of places only as against O(Nlog,N) number
of switching elements for the corresponding MIN. As far
as studying the MINs, the results reported so far [02], [04],
[07] are mainly based on direct combinatorial analysis of
the concerned networks with very little consideration
towards the modelling aspects. In the present paper, we
have concentrated in detection of fault in MINs using this
S-net model. The definition of S-net and some of the
relevant terminologies that are essential to understand the
actual problem of permutation mapping and fault detection
using the model are presented in the following section.

18 Definition and Terminology

21 S-net Model

An S-net model uses two different types of places and
transitions each that enables it to handle data and control
signals as two separate entities. S-net is represented by a
seven-tuple {D, C, P, T, T;, I, O}, where,

D ={d; : d; is a Data place} ;

A data place holds exactly one token in it at some instance.
The token value is a positive integer that indicates the
information held by the element being modelled. A token
stored in Data place is not used to decide the flow of
Control. A Data place is always safe.

C ={c; : ¢; is a Control place} ;

A control place holds token to enable corresponding
Controlled transition for firing. A token value is
represented by an ordered pair <x,y> where x represents
token color and y is the control value, typically 0 and 1 for
two logical states. The number of tokens in a Control place
must not exceed the number of different colors used in the
model and there can be only one token for a particular
color in a single Control place. A Control place is k-
bounded, where the maximum number of colors in the
model is k.

P={p:p isacolor);

T :={t : tis a Controlled transition} ;

A Controlled transition can have one and only one Control
place at its input and the transition is enabled and fired in
presence of some token of the same color as that for the
current stage, having some pre-defined control value in the
corresponding input Control place.

T; == {t: tis an Immediate transition} ;

An Immediate transition is enabled and fired irrespective
of the presence of token in its input place. In fact, none of
the input places for an Immediate transition is a Control
place. An Immediate transition is fired in between a start
time and an end time in a stochastic manner.

I={T., T;} — D" is the input function, a mapping from
transitions to bags of Input places.

O ={T., Ti} - D" is the Output function, a mapping from
transitions to bags of Output Data places.

Different sets of places and transitions as specified in the
definition of S-net are disjoint. Unlike MP-net, in the
proposed S-net model, the same Data places are to hold

different data values for different colors as indicated by
some member of the Color set P. Similarly, the token
value to be stored in a Control place depends on the color.
The firing rule for the two types of transitions are very
similar to that for the MP-net except that incase of S-net,
the color of the token is considered. Whenever a
Controlled transition is fired in color p, tokens in its input
Data places are transferred to corresponding output Data
places following the directed arcs. The token in the
Control place of color value p is removed after the
Controlled transitions are fired. On the other hand, an
Immediate transition connecting an input Data place D, to
an output Data place Dy, for color p transfers the token of
Dy to Dy, on its firing.

22 Properties of S-net

The S-net (D, C, P, T, T}, I, O) has been defined to
structerise the performance analysis of MPP systems and
some of its subsystems with the help of modelling through
it. Before this, in the present section some of the basic
properties of S-net has been discussed.

221 Marking : The presence of token values in
places, at an instance, is called marking of the S-net model.
There will be two separate sets of markings ®p(do, d;, ..,dp)
for D Data places and *c(co, ¢, .., cc) for C number of
Control places such that d; for k e[1..D] is some positive
integer a if the corresponding Data place holds a token of
value a. On the other hand marking of a Control place ¢;
for ke[1..C] is a set of ordered pairs <a,b>, where a is the
token color and b is the control value.

In case of a 2x2 cross-bar switch, the control value is
either O or 1, indicating the through and crossed states of
the switch respectively. The number of elements in the set
of ordered pairs ¢, must not exceed the number of different
colors used in the model and there can be only one token
of a particular color in a single Control place. As a
Controlled transition is fired in a color p, the token of the
same color in its input Control place is perished. Thus,
after the last set of Controlled transitions of in an S-net
model is fired, all the Control places are found empty.

222  Initial State Definition : The initial state of a S-
net is defined as a marking of Data and Control places.
Initially all the Data places being used in a model holds
one token each. In case a NxN multistage interconnection
network is being modelled, the input permutation is stored
as the initial state of the set of N Data places. A Control
place, on the other hand, is initialised with k different
tokens (k<m), for maximum m number of colors being
used in the model. A controlled transition is enabled at
color p, if the corresponding input Control place is
initialized with a token of color p with appropriate control
value.

223  Boundedness : A place in a net is Safe if the
number of tokens in that place never exceeds one The Data
places in S-net are therefore Safe, by definition. Actually,
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Safeness is a special case of the more general Boundness
property. A place is said to be k-safe or k-bounded if the
number of tokens in that place never exceed an integer
value of k. A place that is 1-safe is simply called Safe
place. Therefore the Control places used in a S-net, are p-
bounded, where the maximum number of colors in the
model is p. As the all places in a S-net are bounded, the S-
net itself is bounded.

224  Reachability : The initial marking of the Data
places are changed as different Controlled and Immediate
transitions are fired in different colors in an S-net model. A
state ®p, is said to be reachable if a particular sequence of
firing of Controlled and Immediate transitions exists
following which the initial marking of Data places is
modified to ®p. A reachability set may be defined as the set
of all markings reachable from the initial marking. The
reachability analysis on an S-net model may be performed
without direct consideration of the changes in marking of
the Control places.

. Permutation mapping and Control matrix

A permutation P consists of several individual
transmissions in between two extreme input/output lines at
the opposite ends of the MIN. A Control place may hold a
token signifying the crossed state of corresponding 2x2
switch. For example, let's consider that the Control place
C1 holds a token in pass 1. This would result in shifting
content of Data place D1 into D2 at the end of pass 1.
Before the second pass begins, the time independent
transitions cascading the basic blocks, are fired. This
would take the original content of D1 onto D3. Thus after
the execution of second pass, the content of first input line
of the MIN will finally be mapped onto the third or fourth
output line, depending upon the content of C2 at pass 2.

(Figure 1 : S-net model for a 4x4 Omega Network)

Thus, it may be inferred that presence of a token in C1 for
pass 1 and absence of a token in C2 for pass 2 enforces a
transmission in between input line 1 and output line 3 of
the Omega network under consideration.

The effect of presence or absence of a token in C1 for pass
2 and in C2 for pass 1 can be neglected. A matrix
representation ( ] x} may be proposed to depict the state of
the model for the particular link. Here 1 represents
presence of a token in the corresponding Control place, 0

represents absence of token in the same and x is a don't
care symbol. A matrix like the one presented above may
be termed as Control matrix. For any NxN MIN, the
dimension of the Control matrix would be (kxm) where k
represents number of passes and m is the number of
Control places in the model, which in any case would be
n/2.

Anentry {C;:i®[1..k],j *[1..m]} in the Control matrix
reflects the presence or absence of a token in Control place
G, for pass i. Considering a few links, the corresponding
Control matrices for those are presented below :

1x x 0)

linkl1—3: link3—> 2 :
x0 0 x
1 x x 1

linkl1— 4 : link3—> 4 :
x 1 x0)
I x x 1

link2— 1 ; link4 —» 2 :
, 0 x 0 x)

1 x x0
Iink2— 2 : link4 — 4 :
1 x x 0

Thus, mapping of every individual transmissions can be
followed using the proposed model. This is in line with
the fact that that there exists a path in between every pair
of input-output lines for an Omega Interconnection
network. But Omega, being a blocking MIN, in a conflict
free situation, the Control matrix for the entire
permutation, which essentially is a group of n individual
links, may be derived with the help of the Control Matrixes
for individual links.

Let's consider a permutation (2314) to be mapped using
the proposed S-net model for Omega MIN. The
transmission links involved are thus (1 — 3), (2 > 1),
(3 > 2)and (4 — 4). The respective Control matrices
for the links are to be considered simultaneously to
identify conflicts, if any. A conflict here may be of the
type that for two different transmissions, a particular G
position is found to contain 1 in the Control matrix for
some link and O in the Control matrix for some other for
any two values of i and j wherei ®[1..k] andj e {l...m].
The Control Matrix for the permutation (2314) through
Omega Network will be ( ; o} .

Iv. Detection of Fault using S-net

The present paper aims at efficient detection of different
types of faults using the proposed S-net or its variation.
Corresponding to every stage of a MIN, there will be an
expected output pattern for a set input pattern. Thus an
input pattern (p; p2 ps .- Pn) gets modified at different
stages of a MIN as it is mapped through the same. The
different stuck at faults or complete failure of one or more
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constituent crossbar switch(s) can be detected by
observing the actual output patterns off the stages of the
MIN and comparing it to the corresponding expected
output pattern. In the event that these two patterns are not
identical, presence of fault(s), its type and position may be
detected. But in case the expected and actual patterns are
the same, certain types of stuck at fault(s) may still be there
in individual switching elements. An algorithm has been
proposed to detect faults and their positions in such cases.

However, without using a High level net like the S-net
model, all the input and output links of each and every
switch is to be checked to detect fault(s). Thus O(Nlog,N)
links are to be checked all together to detect all possible
faults in a NxXN MIN. Further, to detect fault in redundant
and non-redundant type of MINs different approaches are
to be adopted. The following algorithm extracts the main
advantage of having only O(N) representative data places
for all the O(Nlog;N) links of a MIN quite efficiently.
Thus detection of various faults for a wide range of MIN
becomes much easier by using S-net model of the MIN.

At a particular stage k of the MIN, the N/2 number of .

switches in the stage hold an input pattern (i i .. i) at N
input links. This is represented by the content of the N
Data places for colour k before the Controlled Transitions
are fired. Depending upon the content of the Control
Matrix as mentioned above, the Controlled Transitions are
fired and just before any of the Immediate Transitions for
the pass are fired content of the Data places in the model
reflect the expected output pattern (0y; 0y .. Oxy) Off the
stage k. One may find whether the actual output pattern
(0ay; 03y .. Oay) is same as (O O .. Own). A bitwise
operation can detect some position q, where the actual
content of the output link oay, and expected value oy, are
not the same. This indicates that the rq/ﬂ'h switch at stage
k of the MIN is faulty. A O(Nlog,N) algorithm has been
presented below to describe the fault detection in MINs
using the proposed S-net model.

Procedure DetectFault

Var

boolean flag

bit O[M][N], OA[M][N]
integer k,q;

Begin
flag=.T;
Fork=1toM /* M is O(log,N) represents the number

of stages in the MIN */

Forg=1toN

Derive O[kl{q] from Ifk}[q] and Control matrix
entry for pass k;
If (Olkllq] ® OALk][g]) ==1 then

Indicate fault in [ q/2 T switch of stage k;

flag= F.;
Endif
Fire Immediate transitions;

Endfor
Endfor
If flag==_T. then
Permutation may be mapped successfully;
Endif
End

The algorithm presented above checks for faults that might
block a particular permutation. This, however, does not
ensure that the whole MIN is fault-free even if the variable
Jlag is found to be .T. after the final iteration is over. For
example, if a switch is having a stuck-at-T fault and at the
same time if the corresponding Control matrix entry for
permutation P is set to 0, the permutation can be
successfully even in presence of the fault.

Thus for detection of multiple stuck at faults, in a non-
redundant path network, the algorithm DetectFault is to be
operated in two passes. In pass 1, all the control matrix
entries are set to 0 whereby the Stuck-at-X, Stuck-at-U
and Stuck-at-L. faults are detected. In pass 2, all the
control matrix entries are set to 1 and the Stuck-at-T,
Stuck-at-U and Stuck-at-L faults are detected. Thus under
fault-free condition, in pass 1, the Identity permutation
should be realized, whereas in pass 2, the Complement
permutation should be realized.

Similarly for Redundant path and Partially Redundant
MINs as well, all types of faults can be identified with the
help of S-net model. There are two basic advantages in
using the S-net model. Firstly, the approach provides a
Snapshot in the sense that for different colours the same
Data places are representing the entire network. In stead
of looking into the four input/output links of each of the
O(Nlog;N) switches, the reliability of the MIN may be
decided just by observing content of a fixed number of N
Data places for any NxN network. This helps in designing
a simple but efficient fault detection algorithm.

Apart from this, the introduction of Control matrix makes
it more convenient to understand mapping of a
permutation through different stages of a MIN. This is
also quite helpful for any performance analysis of the
network as instead of physically setting the crossbar
switches' with some control signal, the impact can be
studied just by altering the corresponding Control matrix
entry and then looking into the changes in the S-net model.

V. Conclusion

The methodology for modelling MINs using the
proposed S-net, has a wide range of applicability. These
high level net models are designed to achieve optimum
compactness so that analysis can be done more efficiently.
Total number of Data and Control places in the proposed
S-net models for any MIN is much less than that of 2x2
Cross-bar switches required to design the network itself.
The number of switching elements required for a NxN
MIN would be O(Nlog,N) whereas the corresponding S-
net model would consist of only N number of Data places
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and N/2 number of Control places. Moreover, for any NxN
network, number of places is a constant linear function of
N only. Modelling with S-net is thus quite effective for
compact representation of Interconnection networks as
well as for detecting different types of faults. In stead of
looking into the input/output links of each of the
O(Nlog,N) switches, the performance of a MIN may be
studied and faults may as well be detected just by
observing content of a fixed number of N Data places for
any NxN network. Further, the introduction of Control
matrix and the algorithm as discussed in section IV suggest
that the present work may be extended to study and detect
Stuck at faults in a wide range of MINs. It is, therefore,
being proposed to consolidate this research work by taking
care of the analysis of different Interconnection networks
based on this model.
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Abstract

The major hurdle in developing distributed systems is the implementing the interoperability
between the systems. Currently, most of the interoperability techniques require that the data
or services to be tightly coupled to a particular server. Furthermore, as most programmers are

1. Introduction

1.1 Background

or 3-tier systems involving clients and servers, each running on different machines in the
same or different locations. Current approaches for n-tier systems have no standardization of
protocol, data representation, invocation techniques etc. Other problems with interoperability
are the implementation of distributed systems and the use of services from heterogeneous
operating environments. These include issues concerning sharing of information amongst
various operating systems, and the necessity for evolution of standards for using data of
various types, sizes and byte ordering, in order to make them suitable for interoperation.
These problems make interoperable applications difficult to construct and manage.
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1.2 Current State-of-the-art solutions

Presently, the solutions attempting to address these interoperability problems range from
low-level sockets and messaging techniques to more sophisticated middleware technology
like object resource brokers (CORBA, DCOM). Middleware technology uses higher
abstraction than messaging, and can simplify the construction of interoperable applications. It
provides a bridge between the service provider and requester by providing standardized
mechanisms that handle communication, data exchange and type marshalling. The
implementation details of the middleware are generally not important to developers building

services into their Systems. Furthermore, they must have a good knowledge of how to deploy
the middleware services to fully exploit the features provided.

Current middleware approaches have another major limitation in the design - the data and
services are tightly coupled to the Servers. Any attempt to parallelize or distribute a
computation across severa] machines therefore encounters complicated issues dye to this
tight control of the SErver process on the data.

1.3 Motivation

1.4 Proposal

The situation concerning interoperability would
Some particular application were provided with the features capable of treating distributed
objects as local objects within the application. The developers could then modify the
distributed object as if it is local within the process. The changes may, however, still need to
be reflected on other applications using that distributed object without creating any problems
related to inconsistency. The current research aims at attaining this objective by creating a
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The tools, named as Automated Interface Codes Generator (AICG), has been developed to
generate the interface wrapper codes for interoperability, from a specification language called
the Prototype System Description Language (PSDL) [LUQS88]. The tool uses the principle of

2. Review of Existing Works

2.1 ORB Approaches

A basic idea for enhancing interoperability is to make the network transparent to the
application developers.  The existing approaches [1] include 1)Building blocks _for
interoperability, 2) Architectures for unified, systematic interoperability and 3) Packaging
for encapsulating interoperability services. These approaches have been assessed using the
Kiviat graphs by Berzins [1] with various weight factors. The Kiviat graphs give a good
summary of the strong and weak points of various approaches. ORB and Jini are currently
the more promising technologies for interoperability.

There are however, some concerns with the ORB models. Sullivan [13] provides a more in-
depth analysis of the DCOM model, highlighting the architecture conflicts between Dynamic
Interface Negotiation (how a process queries a COM services and interface) and
Aggregation (component composition mechanism). The interface negotiation does not
function properly within the aggregated boundaries. This problem arises because components
share an interface. An interface is shared if the constructor or Querylnterface functions of
several components can return a pointer to it. Querylinterface rules state that a holder of a
shared interface should be able to obtain interfaces of a]l types appearing on both the inner
and outer components. However, an aggregator can refuse to provide interfaces of some
types appearing on an inner component by hiding the inner component. Thus, Querylnterface
fails to work properly with respect to delegation to the inner interface.

Hence, for the ORB approaches, detailed understanding of the techniques is required to
design a truly reliable interoperable system. Programmers however, are train mostly on
standalone programming techniques. Adding specialized network programming models
increases the leamning as well as development time, with occasional slippage of target
deadlines. Furthermore, bugs in the distributed programs are harder to detect and
consequences of failure are more Catastrophic. An abnormal program may cause other
programs to go astray in a connected distributed environment [9], [12].
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2.2 Prototyping

The demand for large, high quality systems has increased to the point where a quantum
change in software technology is needed [9]. Rapid prototyping is one of the most promising

In this perspective, an integrated software development environment, named Computer
Aided Prototyping System (CAPS) has been developed at the Naval Postgraduate School, for
rapid prototyping of hard real-time embedded software Systems, such as missile guidance

2.3 Transaction Handling

Building a networked application is entirely different from building a stand-alone system in
the sense that many additional issues need to be taken care of for smooth functionine of a

Proper transaction handling is essential to contro] and maintain concurrency and consistency
within the system. Yang [16], examined the limitation of hard-wiring concurrency control
(CCO) into either the client or the server. He found that the scalability and flexibility of these

not require any changes to the servers or clients in order to support the standard transaction
model. 3) Coordination among the clients that share data but have different CC policies is
possible if all of the clients use the same transaction server.

The AICG model uses the same approach, by deploying an external transaction manager
provided by SUN in the JINI model. All transactions used by the clients and servers are
created and overseen by the manager.
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3. The Basic Model

Figure 1, AIce Model

3.1 The JavaSpace Model

spaces. This space-based model of distributed computing has its roots in the Linda

Process

Process

* Process

Figure 2, JavaSpace operations
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modify an object, a process must explicitly remove it, update it, and reinsert it into the space.
During the period of updating, other processes requesting for the object will wait until the
process write the object back to the Space.

Key Features of JavaSpace: :
® Spaces are persistent: Spaces provide reliable storage for objects. Once stored in the
Space, an object will remain there until a process explicitly removes it.
® Spaces are transactionally secure: The Space technology provides a transaction model

The interface wrappers are generated from an extension of a prototype description language
called Prototyping System Description Language (PSDL). The extended Description
language (PSDL-ext) expands property definitions that are specific only to AICG model.
Some of the salient features of the AICG model are:

application code needs not depend on how the object is distributed, since the local
object copy is always synchronous with the distributed copy. (see section 5)

* Synchronization with various applications is automatically handled. Since the AICG
model is based on the SPace transaction secure model, all operations are atomic.
Deadlock is prevented automatically within the interface by having only a single
distributed copy, and through transaction contro]. (see section 6, 8)
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® Any type of object can be shared as long as the object is serializable. Any data
structure and object can be distributed as long as it obeys and implements the java
serializable feature (see section 10.2).

* Every distributed object has a lifetime. The distributed object lifetime is a period of
time guaranteed by the AICG model for storage and distribution of the object. The
time can be set by developer (see section 7.

* All write operations are transaction secure by default. AICG transactions are based on
the Atomicity, Consistency, Isolation, and Durability (ACID) properties (see section
8).

® Clients can be informed of changes to the distributed object through the AICG event
model (see section 9). A client application can subscribe for change notification, and
when the distributed object is modified, a separate thread is spawned to execute the
callback method defined by the developer.

® The wrapper codes are generated from high-level descriptive languages: hence, they
are more manageable and more maintainable.

4. Developing Distributed Application with the AICG Tool

This section describes the steps for developing distributed applications using the AICG
model. An example of a C4ISR application is introduced in section 4.2 to aid the explanation
of the process. The same example will be used throughout this paper.

4.1 Development Process

The developer starts the development process by defining shared objects using the
Prototyping System Description Language (PSDL). The PSDL is processed through a code

E— PSDLtoSpace |
PSDL definition of the distributed —' 1 T/——
objects —

Set of Interface Wrapper Files
Figure 3, PSDL to Space
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Server Stubs in
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v

Implement the
distributed object

Server Class

Figure 4, Generating the interface
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4.2 Input definition to the Code generator

The following example demonstrates the development of one of the many distributed objects
in the C4ISR system. Airplane positions picked up from the sensors are processed to produce
track objects. These objects are distributed over a large network and used by several clients’
stations for displaying the positions of planes. Each track or plane is identified by track
number. The tracks are ‘owned’ by a group of track servers, and only the track servers can
update the track positions and its attributes. The clients only have read access on the track
data. Figure 5 shows the PSDL codes for the track object and its methods, Figure 6 shows the
PSDL codes for the Track_list object and its methods.

Type track IMPLEMENTATION
SPACE
PECIFICATION
Straccl:'n[;m:er'?);reogr PROPER TY SPA CEMODE= READ
* (=3
END END
OPERATOR track END
PECIFICATION
S[NPCUT x:intecer - OPERATOR setPosition
END N SPECIFICATION
IMPLEMENTATION INPUT post : position_rype
SPACE END
PERTY SPACEMODE=
COMS‘ITJ‘Q(OJC?SR AC IMPLEMENTATION
END SPACE
END PROPERTY SPACEMODE = WRITE
PROPERTY TRANSACTION TIME = 2000
OPERATOR getlD -
SPECIFICATION ENV
ourrPuUT x:integer END
i OPERATOR getPosition
NTATION &
nggg ENTA SPECIFICATION
PROPERTY SPACEMODE= READ 0 CD/ TPUT post : position_type
EN,
ENEZv o IMPLEMENTATION
SPACE
OPERATOR setCallsion PROPERTY SPACEMODE = READ
SPECIFICATION
INPUT sign: string END
END N
IMPLEMENTATION ”;[;jgg[EN TATIO
Sﬁ;gim TY SPACEMODE= WRITE PROPERTY SPACENAME= DODSpaces
PROPERTY TRANSACTIONTIME = 300 PROPERTY OWNERSHIP = YES
END PROPERTY SECURITY = SER VER
END PROPERTY LEASE = 12000
PROPERTY CLONE = MANY
OPERATOR getCalisign PROPERTY NOTIFY = NO
SPECIFICATION PROPERTY RETRY = ]0
OUTPUT sign: string END
END

Figure 5, Track example in PSDL




TYPE track_list IMPLEMENTATION

SPECIFICATIO SPACE
END PROPERTY SPACEMODE= WRITE
END
OPERATOR track_list END
SPECIFICATION
END OPERATOR removelD
IMPLEMENTATION SPECIFICATION
SPACE INPUT id: integer
PROPERTY SPACEMODE= END
CONSTRUCTOR IMPLEMENTATION
END SPACE
END PROPERTY SPACEMODE= WRITE
PROPERTY TRANSACTIONTIME = 2000
OPERATOR getiD END
SPECIFICATION END
INPUT index: integer END
OUTPUT x:integer
END IMPLEMENTATION
IMPLEMENTATION SPACE
SPACE PROPERTY SPACENAME= DODSpaces
PROPERTY SPACEMODE= READ PROPERTY OWNERSHIP = YES
PROPERTY SECURITY = SERVER
END PROPERTY LEASE =0
END PROPERTY CLONE = ONE
PROPERTY NOTIFY = YES
OPERATOR setNewID PROPERTY RETRY = 5
SPECIFICATION END
INPUT id: integer
END

Figure 6, Track list example in PSDL

The PSDL grammar used for the AICG is an extended version of the original PSDL grammar
(Appendix A). PSDL model is very extensive and can be used to model an entire distributed
system. However, the AICG only used a portion of the PSDL to describe the interface
between systems. In another word, interactions between applications are defined using the
PSDL but not the application itself. Because of this, slight modifications on the PSDL
grammar were needed. The complete listing of the changes in the grammar statements can
also be found in Appendix A.

The track PSDL starts with the definition of a type called track. It has only one identification
field tracknumber. Of course. the track objects can have more than one field, but only one
field is in this case is used to uniquely identify any particular track object. The type
track_list shown in figure 5, on the other hand, does not need an identification field since
there is only one track_list object in the whole system. Track_list is used to keep a list of all
the active tracks tracknumber in the System at that moment in time.

All the operators (methods) of the fype are defined immediately after the specification. Each
method has a list of inpur and output parameters that define the arguments of the method.




The most important portion in the method declaration is the implementation. The developer
must be able to define the type of operation the method supposed to perform. The operations
are constructor (used to initialize the class), read (no modification to any field in the class)
and write (modification is done to one or more fields in the class). These are necessary, as the
code generated will encapsulate the synchronization of the distributed objects.

The other field in the implementation portion of the method, is transactiontime.
transactiontime defines the upper limit in milliseconds within which the operation must be
completed. The transaction property is discussed in detail in Section 8.

Upon running the example on figure 5 through the generator tool, a set of Java interface
wrapper files are produced. Developers can ignore most of the generated files except the
following:

¢ Trackjava: this file contains the skeleton of the fields and the methods of the track
class. The user is supposed to fill the body of the methods.

* TrackExtClientjava: this is the wrapper class that the client initialized and used
instead of the track class.

* TrackExtServer.java: this is the wrapper class that the server initialized and used in
replace for the track class. '

® NotifyAICG java : this class must be extended or implemented by the application if
event-notification and call-back are needed.

The methods found in the trackExtClient and trackExtServer have the same method names
and signatures of the track class. In fact, the track class methods are been called within
trackExtClient or trackExtServer.

S. Distributed Data Structure and Loosely Coupled Programming

Conceptually a distributed data structure is one that can be accessed and manipulated by
multiple processes at the same time without regard for which machine is executing those
processes. In most distributed computing models, distributed data structures are hard to

achieve. Message passing and remote method invocation systems provide a good example of

the difficulty. Most of the systems tend to keep data structure behind one central manager
process, and processes that want to perform work on the data structure must “wait in line” to
ask the manager process to access or alter a piece of data on their behalf. Attempts to
parallelize or distribute a computation across more than one machine face bottlenecks since
data are tightly coupled by the one manager process. True concurrent access is rarely
achievable.

Distributed data structures provide an entirely different approach where we uncouple the data
from any particular process. Instead of hiding data structure behind a manager process, we
represent data structures as collections of objects that can be independently and concurrently
accessed and altered by remote processes. Distributed data structures allow processes to work
on the data without having to wait in line if there are no serialization issues.
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same time. However, this does not prevent other processes from overwriting the corrected
data. For example, in the normal JavaSpace, process A instead of performing a “take” follow
by a “write operation, the programmer wrote a “read” operation, followed by a “write”
operation. This results in 2 copies of the object in the Space. The AICG model prevents this
by encapsulating the 3 basic commands from the developers. All modification on the object
are automatically translated to “take”, followed by “write” and all operations that access the
fields of the distributed object are translated to “read”. These ensure that local data are up-to-
date and serialization is maintained.

Loosely-coupled programming has it pitfalls also. Distributed objects may be lost if a
process removes it from the space and subsequently crashes or is cut off from the network.
Similarly, the system may enter in a deadlock state if processes request more than one
distributed object while, at the same time, holding on to distributed objects required by other
processes. In cases like this, the AICG mode] groups multiple operations into a transaction to
ensure that either all operations complete or none occur, thereby maintaining the integrity of
the application. With transaction control, deadlock is prevented if the process did not
complete the operation within a certain permitted time. The application can retry the
operation immediately or wait for a random time before performing the operation again

6. Synchronization

Synchronization plays a crucial role in any design of distributed application. Inevitably,
processes in a distributed system need to coordinate with one another and avoid bringing the
systemn into an unstable state such as deadlock. Creating distributed applications with AICG
can significantly ease the burden of process synchronization since synchronization is already
built into the AICG operations. Multiple processes can read an object in a space at any time,
but when a process wants to update an object, it has to remove it from the space and thereby
gain exclusive access to it first. Hence, coordinated access to objects is enforced by the
AICG interface doing read. take and write operations.

More advanced and complex synchronization schemes can be easily build upon from the
basic atomic features of the AIGC operations. An example is semaphores. Semaphores, a
synchronization construct that was first used to solve concurrency problems in operating
systems, are commonly found in multithreaded programming languages, but are more
difficult to achieve in distributed systems. Semaphores are typically implemented as integer
counters that require special language or hardware Support to ensure the atomic properties of
the UP (signal) and DOWN (wait) operations. Using AIGC space model, we could easily
implement a semaphore as a shared variable that holds an integer counter. By assigning a
distributed variable or object as a semaphore, groups of distributed objects can be
synchronized. Hence, the AIGC model permits the developers to develop more complicated
distributed applications without being concemed about synchronization and deadlock.
Furthermore, all operations within the AICG model can impose transaction control with
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timeout monitoring. After the timeout period, the transaction would rollback the application
to a stable state.

7. Object Life Time (Leases/Timeout)

Leasing provides a methodology for controlling the life span of the distributed objects in the
AICG space. This allows resources to be freed after a fixed period. This model is beneficial
in the distributed environment, where partial failure can cause holders of resources to fail
thereby disconnecting them from the resources before they can explicitly free them. In the
absence of a leasing model, resources could grow without bound.

There are other constructive ways to harness the benefit of the leasing model besides using it
as a garbage collector. As for example, in a real-time system, the value of the information

The AICG model simplified the Java Space lease model into two configurations. These are

1. Generally, the distributed object lasts forever as long as the space exists, even if the
leaseholder (the process that creates the object) has died. This configuration is
enabled by setting the SPACE Jease property in the Implementation to 0.

2. In real-time environment, the distributed object lasts for a fixed duration of x ms
specified by the object designer. To keep the object alive, a write operation must be
performed on the object before the lease expires. This configuration is set through the
SPACE lease property in the Implementation to the time in ms required.

8. Transactions

The AICG model uses the Jinj Transaction model, which provides generic services
concerning transaction processing in distributed computing environment.
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8.1 Jini Transaction model:

All transactions are overseen by a transaction manager. When a distributed application needs -

operations to occur in a transaction secure manner, the process asks the transaction manager
to create a transaction. Once a transaction has been created, one or more processes can
perform operations under the transaction. A transaction can complete in two ways. If a
transaction commits successfully, then all operations performed under it are complete.
However, if problems arise, then the transaction is aborted and none of the operations occurs.
These semantics are provided by a two-phase commit protocol that is performed by the
transaction manager as it interacts with the transaction participants.

8.2 AICG Transaction model

AICG model encapsulates and manages the transaction procedures. All operations on the
distributed object can be either with transaction control or without. Transaction control
operations are controlled with a default lease of 2 sec. This default value of leasing time may,
however, be overriden by the user. This is kept by the transaction manager as a leased

resource, and when the lease expires before the operation committed, the transaction manager
aborts the transaction.

Transactions have the following desirable effect on the semantics of the AICG operations.
When a distributed object is created. the object is not seen or accessible outside of the
transaction until the transaction commits. However, when a distributed object is updated or
read under transaction, it can come from new object created within the transaction or objects
in the space.

The AICG model by default, enable all transaction for write operations and the transaction
lease time is two seconds. The developer can modify the lease time through the PSDL
SPACE transactiontime property.

PROPERTY _
transactiontime= 0: Disable transaction for that method
/n: Set the lease time to n ms,

All the read operations in the AICG model do not have transactions enabled. However, the
user can enable it by using the property transactiontime with the upper limit in transaction
time for the read operation. To used the same transaction for more than one operation, the

following property must be set.

PROPERTY
transactionID = 99 : An ID number that are the same for more than one method.
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9. AICG Event Notification

In the distributed and loosely-coupled programming environment, it is desirable for an
application to react to changes or arrival of newly distributed objects instead of “busy
waiting” for it through polling. AICG provides this feature by introducing a callback
mechanism that invokes user-defined methods when certain conditions are met.

Java provides a simple but powerful event model based on event sources, event listeners and
event objects. An event source is any object that “fires” an event. usually based on some
internal state change in the object. In this case, writing an object into space would generate
an event. An event listener is an object that listens for events fired by an event source.
Typically, an event source provides a method whereby listeners can request to be added to a
list of listeners. Whenever an event source fires an event, it notifies each of its registered
listeners by calling a method on the listener object and passing it an event object.

Within a Java Virtual machine (JVM), an application is guaranteed that it will not miss an
event fired from within. Distributed events on the other hand, had to travel either, from one
JVM to another JVM within a machine or between machines networked together. Events
traveling from one JVM to another may be lost in transit, or may never reach their event
listener. Likewise, an event may reach its listener more than once.

Space-based distributed events are built on top of the Jini Distributed Event model, and the
AICG event model further extends it. When using the AICG event model. the space is an
event source that fires events when entries are written into the space matching a certain
template an application is interested in. When the event fires, the space sends a remote event
object to the listener. The event listener codes are found in one of the generated AICG
interface wrapper files. Upon receiving an event, the listener would spawn a new thread to
process the event and invoke the application callback method. This allows the application
codes to be executed without involving the developer in the process of event-management.

There are a few steps for setting up AICG event for a particular application. Firstly, the
distributed objects must have the SPACE properties for Notification set to yes. One of the
application classes must implement (java term for inherit) the notifyAICG abstract class. The
notifyAICG class has only one method. which is the callback method. The user class must
override this method with the codes that need to be executed when an event fires.

10. AICG Design

This section explains the design of the AICG and the codes that are generated from psdl2java
program. The codes used in this section to explain the AICG and the development processes
are generated from the track PSDL of section 4.2.

10.1 AICG Architecture

The AICG architecture consists of four main modules. They are the Interface modules, the
Event modules, Transaction modules and the Exception module. The interface modules
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modules (eventAICGID, evenAICGHandler, notifyAICG) handle external events generated
from the JavaSpace that are of interest to the application. Transaction modules
(transactionAICG, transactionManagerAICG) support the interface module with transaction
services. Lastly, the exception module (exceptionAICG) defines the possible types of
exceptions that can be raised and need to be catch by the application. Figure 7 below shows

and application.

Each time the application instantiate a track class by creating a new trackExtServer, the
following events take place in the Interface:
1. An Entry object is created together with the track object by the trackExtServer. The
tack object is placed into the Entry object and stored in the space.
2. Transaction Manager is enabled.
3. The reference pointer to trackExtServer is returned to the application.

Notification -
module ~

trackExtServer
trackServerExt L -

getiD

{ | getCallsign
' ' setCallsign

getPosition

A
P
P
L:

I
C
A
T
I
O
N

setPosition

Transaction

 Exception Handling

Figure 7, Architecture of the generated interface wrapper and the interaction with the other
modules and application

Each time a method (getID, getCallsign, getPosition) that does not modify the contents of the
object is invoked, the following events take place in the Interface:
I. When the application  invokes the method  through the Interface
(trackExtServer/trackExtCIient).
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The Interface performs a Space “get” operation to update the local copy. ;
The method is then executed on the updated copy of the object to return the value
back to the application.

LI N

Each time a method (setCallsign, setPosition), which does modify the contents of the object
is invoked, the following events take place in the Interface:
1. 'When the application invokes the method through the Interface
2. The interface performs a Space “take” operation, which retrieves the object from the
space.
3. The actual object method is then invoked to perform the modification.
4. Upon completion of the modification, the object is returned to the space by the
interface using a “write” operation.

10.2 Interface Modules

The interface modules consist of the following modules: an entry (entryAICG) that are stored
in space, the actual object (trackExt )that are shared and the object wrapper (trackExt,
trackExtClient, trackExtServe.).

10.2.1 Entry

A space stores entries. An entry is a collection of typed objects that implements the Entry’
interface. The base class of the AICG distributed object:

puslic abstract class encry2ICC implements Entry
{
// main identifcation number
public Integer entryIp;
// reguired by JavaSpace //default constructor
public entryAICG{ }
{}
public entryAICG(int id}/
entryIb = new Integer(id);

// return the object stored in //the entry
public abstract Object
getObject( };
)

The Entry interface is empty; it has no methods that have to be implemented. Empty
Interfaces are often referred to as “marker” interfaces because they are used to mark a class
as suitable for some role. That is exactly what the Entry interface is used for, to mark a class
appropriate for use within a space. ‘

All entries in the AICG extend from this base class. It has one main public attribute, an
identifier and an abstract method that returns the object. Any type of object can be stored in
the entry. The only limitation is that the object must be serializable. Serializable allows the
java virtual machine to pass the entire object by value instead of by reference. Here is an
example “track” entry codes generated by the AICG from the PSDL file in figure 4. The
interface contains the object track in one of the field and an ID.
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public abstract class trackEntry
extends entryAICG
{

// id is required if there are more
// than one similar object in
// the space
public Integer id;
// track object
public track data;
// default Constructor
public trackEntry(){ }
// Constructor with information
//extracted from the track PSDL
// file.
public trackEntry(int aid, Integer
inID, track inData) {
super(aid) ;
data = inData;
id = inID;

public Object getObject () {
return data;

All Entry attributes are declared as publicly accessible. Although it not typical of fields to be
defined in public in object-oriented programming style, the associative lookup is the way the
Space-based programs locate entries in the space. To locate an object in space, a template is
specified that matches the contents of the fields. By declaring entry fields public, it allows
the space to compare and locate the object. AICG encourage object-oriented programming

to meet this objective. The Serializable interface is “marker” interface that contains no
methods and serves only to mark a class as appropriate for serialization. Here is the

Serializable interface:
public abstract interface Serializable

// this interface is empty

In that case, the track class of the example needs to implement the interface Serializable.

public class track impiements
Serializable {

// since Serializabie is a marker

// interface no methods need to be
//override.

88




10.2.3 The Actual Object

We now look at the actual objects that are shared between the servers and clients. The
psdi2java generates a skeleton version of the actual class with the methods names and its
arguments. The body of the methods and its fields need to be filled by the developers. The
track class generated is shown below:

public class track implements
java.io.Serializable

private Integer trackNumber;

public track(int inID)
// insert the body here

public int getID!;{
// insert the body here
}

public void setPecsition
(position_type post){
// insert the body here

public position_type getPosition() {
// insert the body here

}

public S:tring getCallisigni) {
// insert the body here

}

public void setCallsign{String
sign) {

// insert the body here

}

// automatically generated do

// not delete!:!

public Integer autoGetIDi () {
return trackNumber ;

)
}

10.2.4 Object Wrapper

Wrapping is an approach to protecting legacy software systems and commercial off-the-shelf
(COTS) software products that require no modification of those products [1]. It consists of
two parts, an adapter that provides some additional functionality for an application program
at key external interfaces, and an encapsulation mechanism that binds the adapter to the
application and protects the combined components [1].

In this context, the software being protected contains the actual distributed objects, and the
AICG model has no way of knowing the behaviors of the distributed object other than the
type of operations of the methods. The adapter intercepts all invocations to provide additional
functionalities such as synchronization between the local and distributed object, transaction
control, events monitoring and exceptions handling. The encapsulation mechanism has been
explained in the earlier section (AICG Architecture). Instead of instantiation of the actual
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object, the respective interface wrapper is instantiated. Instantiating the interface wrapper
would indirectly instantiate the actual object as well as storing the object in the space.

Three classes generated for every distributed objecf. There are named with the object name
appended with the following Ext, ExtClient, and ExtServer.

10.3 Event Modules

The event modules consist of the event callback template (notifyAICG), the event handler
(evenAICGHandler) and the event identification object (eventAICGID).

10.3.1 Event Identification object

The event identification object is used to distinguish one event from others. When an event of
interest is registered, an event identification object is created to store the identification and
event source. Together these two properties act to uniquely identify the event registration.

The object has only two methods, an ‘equals’ method that check if two event identification
objects are the same and a ‘to string” method which is used by the event handler for
searching the right event objects from the hash table.

10.3.2 Event Handler

Event Handler is the main body of the event operation in the AICG model. It handles
registration of new events, deletion of old events, listening for event and invoking the right
callback for that event. Inside the event handler are in fact, three inner classes to perform the
above functions. Events are stored in a hash table with the event identification object as the
key to the hash table. This allows fast retriever of the event object and the callback methods.

The event handler listens for new events from the space or other sources. When an object is
written to the space, an event is created by the space and Captured by the all the listeners. The

// call when an external event is
// “Eired~.
public void run() |
Obiect source = event.cetSource() ;
leng id = event.getiD() ;
long segN =
event.getSequenceNumber () ;
// create a new event identifcation
//cbject
€ventAICGID keyID= new
eventAICGID(id, source) ;
registerdlcG tempReg;

String key = new
String(keyID.toString());

// check if the key exist in the

// hash table (storage)

if {{tempReg = {registerAICG)
Storage.get (key)) !=null)
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{
// check if the event is an old or
// duplicate event
if (segN » tempReg.seqNum) {
tempReg. seqNum = segN;
src.listenerAICGEvents
(tempReg.anyObj);
} else {
// old events ignored
return;

}

}// end of notifyHandler
10.3.3 The Callback T. emplate

The callback template is a simple interface class with an abstract method
listenerAICGEvents. Its main function is to allow the AICG model to invoke the application
program when certain events of interest is “fired”. As explain earlier, the template need to be
implemented by the application that wishes to have notification.

public interface notifyArce

public abstract void
listenerAICGEvents(Object obj);

)
10.4 The Transaction Modules

The transaction modules consist of transaction interface (transactionAICG) and the
transaction factory (transactionManagerAICG).

The transaction interface is a group of static methods that are used for obtaining reference to
the transaction manager server somewhere on the network. It uses the Java RMI registry or
the look-up server to locate the transaction server.

The transaction factory uses the transaction interface to obtain the reference to the server,
which is then used to create the default transaction or user-define transaction. In short the
transaction factory can perform the following:

1. Invoke the transaction interface to obtain a transaction manager.
2. Create a default transaction with lease time of 5 seconds.
3. Create a transaction with a user define lease time.

10.5 The Exception Module

The exception module defines all the exception code that is return to the application when
certain unexpected conditions occur in the AICG model. The exception include

. "NotDeﬁnedExceptionCode"; unknown error occur.

* "SystemExceptionCode": system level exceptions, such disk failure, network failure.

. "ObjectNotFoundException"; the space does not contain the object.
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* ‘"TransactionException"; transaction server not found, transaction expire before
commit,

"LeaseExpireException"; object lease has expired.
"CommunicationException"; Space communication errors.
"UnusableObjectException"; object corrupted.

"ObjectExistException”; there another object with the same key in the space.
"NotiﬂcationException"; events notification errors.

11. Conclusion
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Abstract”

Previous work on computer-aided prototyping system
(CAPS) is stepping into a distributed environment to meet
the requirement of integrating legacy systems in
heterogeneous network. A three-module architecture
design, including Supporting Database, System Tools and
Execution Manager, is proposed in this paper for the
distributed CAPS system (DCAPS). By using
wrapper/glue technique, different prototyping tools in a
heterogeneous environment share the input/output data
files for prototypes. The architecture is generalized for the
communication among legacy systems for data
interchange. DCAPS not only provides a useful tool for
distributed real-time system prototyping, but also is a
demonstration of distributed system in heterogeneous
environment.

Key words: software interoperability, fast prototyping,
distributed system, multi-agent system

1. Introduction

Computer aided prototyping has been found useful in
software development, especially for large real-time
systems. Prototyping provides the capability to accurately
simulate requirements in new application areas. Previous
work such as the Computer Aided Prototyping System
(CAPS) has demonstrated real-time issues, software reuse
and process scheduling in fast prototyping for a single
processor computing environment '3, However, it is still
hard to make use of existing systems in a distributed
environment, especially for real-time systems under a
heterogeneous environment. With the fast development of
networks and the Internet, interoperability has become the
focus of current research. This paper extends research on
CAPS to distributed and network computing.

Distributed real-time software system prototyping and
interoperability in a heterogeneous environment form the
focus of this paper. In recent years, hard real-time, soft
reattime and embedded systems are increasingly

¥ This research was supported in part by the U. S. Army
Research Office under contract/grant number 35037-MA
and 40473-MA.

US.A.

important in various application areas from ebusiness to
military applications. These systems have strict
requirements on accuracy, safety and reliability. Usually
such software is large and built on several legacy systems
to make use of the partial or fill functionalities of these
legacy systems. When the legacy systems are physically
located in a distributed network, they are connected
through certain network protocols.” Fast prototyping of
these systems helps the users in analysis, design,
implementation, verification, validation and optimization.
Approaches for modeling, realizing, reconfiguring and
allocating logical processes and interactions to processors
and communication links are needed to make prototyping
useful in this domain.

This paper describes a distributed CAPS system (DCAPS)
to fulfill the requirements for distributed software
prototyping.  Prototype System Description Language
(PSDL), a prototyping language, is applied in the
description of the real-time software in DCAPS system.
PSDL provides the specifications not only for real-time
constraints, but also for the connection and interaction
among software components. PSDL has open syntax for
the design of new features that arise in the context of
distributed computing. Wrapper and glue technology is
applied for the normalization and data transfer of legacy
systems. A multi-agent technique is used to manage the
execution process.

Section 2 introduces the three-module architecture of
DCAPS system. All the modules are described in detail in
Section 3, 4 and 5 separately. Sction 6 gives a simple
example prototype in DCAPS.

2. System architecture

Earlier work on computer-aided prototyping system
(CAPS) uses PSDL, a prototype description language, to
describe the real-time software ). PSDL itself has an
open structure so that the user is able to define new
properties for software components, such as new-added
network configurations. CAPS prototypes a software
system in the following steps. First, user selects the
software components from the reusable component
libraries © construct the prototype in a graphic editor.
This prototype is saved as a plain text file in PSDL format.
User may also use the graphic user interface (GUD

94




generator provided by CAPS to create the new GUI
interface for the prototype. Then, the translator and
scheduler work on this PSDL file to generate the
wrapper/glue  code and dynamic/static schedules
respectively. Both the source code of reusable components
and automatic generated source code will be compiled
together to get the executable final software. It will be
tested in CAPS (simulation) for both the execution
correctness and the real-time requirements.

As described above, CAPS consists of various prototyping
tools to provide all these functionalities. They play
different roles during the prototyping process. For
example, the scheduler just needs the information of
timing constraints for every component, while the
translator does not care about such information other than
the network configurations and data type definitions.
When new properties are enabled in PSDL description of
the prototype, for instance to prototype a networked
software, some tools must be updated by new generations
while the rest stay the same. Therefore, the architecture of
CAPS must consider the evolution of its own components.

CAPS tools were originally developed in SunOS operating
system for components which are located on one
processor. To consider the user’s requirement, the user
interface is required to migrate to Windows NT operating
system. At the same time, the old operating system is not
supported by some new technologies. To avoid the
complexity of migrating the whole system to a new
operating system, CAPS now has to work in a distributed
and heterogeneous environment. A new architecture
becomes important for the system. On the other hand,
CAPS is required to prototype software systems in
distributed and heterogeneous environments. The
requirements to develop the distributed CAPS (DCAPS)
are consistent for constructing the distributed software
prototypes, i.e., DCAPS itself is a demonstration of
distributed software construction. A three-module
architecture is proposed to design the distributed CAPS
system (DCAPS).

From the viewpoint of prototyping procedure, DCAPS can
group its tools into three basic modules (Figure 1).

Supporting
Databases

Execution
Manager

Prototyping
Tools

Figure 1. Three-module architecture design of DCAPS

In this architecture, DCAPS provides users support from
three aspects. Databases help users to manage and reuse
the prototyping requirements and reusable software
components. It also validates the prototypes for
components’ evolution. Prototyping tools help user in
automatically generating connection code, GUI code, and
data type conversion code among components during the
design process. Execution manager controls and visualizes
the simulation process to validate the system design,
particularly on real-time constraints.

DCAPS inherits prototyping tools that were implemented
in different operating systems including SunOS, Solaris
and Windows NT. It provides different user interfaces for
multiple operating systems including Windows NT. All
the tools, which are in the three modules, are located in a
distributed environment during one prototyping job.

3. Supporting databases

Supporting databases provide intelligent guidance to users
so that in a form of adaptive control it is integrated into the
system prototyping. There are two types of database
support involved in DCAPS system. One is the software
reuse database. It contains the specifications for all the
reusable software components so that they are able to be
retrieved and to be accessed during the prototyping
procedure and the execution (simulation). Software
version control should also be considered within this
database support. The other is the requirement database.
It allows users to reuse the previous prototypes that are
stored in the database. Thus it may shorten the design
cycle and even optimize the design. The decomposition of
this module is shown in Figure 2.

.llIIIIIIlll-lllllll.lllll.l.lllll.ll..lllllIIIIII.

Requirement Software-reuse

E Database Database E
. Database E
: Manager :

NRequest & response

Figure 2. Supporting database system
The browse and retrieve operations for the database

includes both syntactic exclusion and semantic exclusion
to narrow the search range /'),

4. Prototyping tools

Prototyping tools module is decomposed as follows
(Figure 3). It includes GUI for various operating systems,

95




which includes a PSDL graphic editor, the prototype
scheduler ¥ the prototype translator (automatic code
generator for data communication among components),
source code compilers and code optimizers for various
languages and operating systems. The major operating
systems considered in DCAPS are SunOS. Solaris and
Windows NT. Job Dispatcher works on a server platform
to receive user’s commands from GUI and to dispatch jobs
to correspondent tools.

The compiler in different operating systems just needs to
work with the correspondent automatically generated code.
With the change of language in 2 specific operating
system, it is not necessary to change the other components
of DCAPS.

(Sun0S) (Solaris)
Compiler Compiler

Code Optimizer

(WinNT)

Compiler E
. (Solaris) H
E , Job Dispatcher (WinNT) :
: f \4 PSDL editor | :
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3 Scheduler Translator PSDL editor .

Figure 3. Decomposition of System Tools

The DCAPS GUI can be further decomposed as in Figure
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Figure 4. Decomposition of DCAPS GUI

The graphic PSDL editor should be enhanced for new-
added properties in the PSDL description of prototype,
such as network configuration, different timing constraint,
etc. Even in such cases, the system architecture does not
have to change at all'except that the respective modules are
replaced.

The different tools, which are located in different
computers, communicate with each other through TCP/IP
protocol. The wrapper/glue technique is applied.
However, because the data types in communication are
known to each other. the wrappers among different tools
are blank to each other.

5. Execution manager

The execution of the distributed system. i.e., the simulation
of the prototype, is managed by the Execution Manager. It
uses a virtual centralized synchronization timer for
different task schedules in different processors. This
subsystem must compensate for clock drift due to
differences in clock rates without violating global timing
constraints as long as clock drift rates remain within
specified bounds. A multi-agent system is used in the
distributed work to coordinate the computing processes.

The Prototyping Scheduler generates one specific task
schedule (both dynamic and static) for each node.
Execution Manager provides a centralized Executor to
administrate and to synchronize the processes in different
platforms on which reusable components are located
(Figure 5). The procedure of execution is also sent back to
GUI of DCAPS so that the user may see a visualized
process and have clear information on the prototype.

(Unix)
Node B
L
(Unix)
Execution

/ Manager

(Linux) ¢
Node A

Legend: local timing agents

Figure 5. Execution model for a distributed system

In each node, for all the legacy components, the
wrapper/glue technology is applied in data interchange
(Figure 6). A form of software wrapper and glue
technology provides standardized interactions between
legacy systems in a heterogeneous network in DCAPS. It
makes interoperability and integration possible for a
distributed structure. Legacy systems under the wrappers
collaborate through the message passing approach in the
glue connection. Wrappers provide a generic interface for
every single legacy system so that its input and output
become uniform, both for consuming data from other
legacy systems and for generating data to others. On the
other hand. glue structure supports an abstract data class
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for data transfer. It encodes any type of data to a common
type before putting it into a data stream at the sender’s end.
At the receiver’s end, the data is decoded to the required
data type that may be different from that at the sending
end. Wrapper and glue concepts are the basis of a formal
model for software and hardware co-design.

A multiple-agent system is generated automatically by the
Prototyping Translator tool in the architecture as the
“glue” for the network communication of the legacy
system’s inputs and outputs. For each input/output data
flow, an agent is associated as an automatic pipe of data
transmission. It makes use of the run-time library of
network communication according to the specific network
protocol in the node that is provided in component
information. This “glue” allows the legacy systems not to
worry about the network settings for the communication to
other components. The communication among agents can
reference to several available techniques such as
JavaSpace, Jini [, etc. The technology used in real
application should be selected according to the real
network configuration.

The “wrapper” code works with the component for data
type control/conversion, firing condition, exception
handling, timing constraints, etc. The “wrapper” is simply
composed in several different layers so that all the features
that user concerns are tunable according to user’s
selections. The “wrapper” communicates to the agents for
data outgoing and incoming. Under certain specific
conditions, some layer of the wrapper may become
transparent based on enhanced information. For example,
in the design of DCAPS, the input/output of different
prototyping tools are standardized in advance. Therefore,
the data type conversion is not required. Because DCAPS
itself does not have real-time constraint, the wrapper for
timing constraints is transparent.
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Output Output
1 2

glue

Legacy
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Figure 6. Wrapper/glue architecture for one component

For each processor, a local timing agent manages the
execution tasks under the schedule. I/O data of each
component is received/sent between legacy system and the
uniform  software wrapper, which is autommtically
generated and transferred through glue agents generated by
glue code, which hides the specific network configurations
via derived design and network mode/parameters.

6. Prototyping example

The system of a weather station is prototyped in DCAPS to
demonstrate the ability of prototyping the distributed
software in heterogeneous operating system.

¥ drzcnay
iz mmoseee

S DR -

Figure 7. Top level of weather-station prototype
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Figure 10. Properties configuration for components

As shown in Figure 7-9, weather station system consists of
two parts: sys_b is the sensor and sys_a is the controlier.
The sensor system includes two sub-sensors which are
wind direction sensor and temperature sensor. The
measurements are converted in specified units. It reports
the measurement results to the controller. The controller
sends control signal of signal unit to the sensor system so
that the sensor can be configured automatically. Both thé
sub-systems have their own user interfaces in the local
systems. )

The two sub-systems are located in different computers.
They are connected through network in TCP/IP protocol.
A SOCKET communication run-time library is provided
for data interchange.

DCAPS provides the graphic user interface to edit the
prototype in multi-level. For each component, it provides
an interface (Figure 10) so that user may specify properties
such as timing constraints, network configuration, data
flow type, etc. PSDL editor also supports a GUI code
generator so that user can create a personal-style user
interface for the prototype.

7. Conclusions

The DCAPS system provides a useful tool for distributed
reaktime software fast prototyping. A three-module
architecture is proposed to make DCAPS system suitable
for distributed environment. The wrapper/glue method
used in DCAPS can be generalized to system construction
and interconnection of legacy Systems. By automatically
generating the codes for the “wrappers and glue” and
providing a powerful environment, DCAPS allows the
designers to concentrate on the difficult interoperability
problems and issues, freeing them from implementation
details. It also enables easy reconfiguration of software
and network properties to explore design alternatives.
DCAPS is an on-going research project for the
development and refinement of its prototyping tools.
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Abstract

Speech technology has been moving ever increasingly
into the domain of the everyday computer user. Computer
users would use speech technology more readily if they
could speak to the machine like they could talk to another
person. With advances in visual agent and natural
language technologies, this concept is already a
possibility. In this paper, we present some ideas about a
framework of a type of user interface agent known as a
natural language agent which combines spoken language
understanding and visual agent technologies into a simple
to use computer interface. Preliminary results of two
experimental agents based on the framework are
discussed. Future work on creating complete natural
language agent systems is also included.

Keywords: natural language agents, visual agents, speech
technologies.

1 Introduction

If you could decide how you wanted to communicate
with your computer, would you really pick a keyboard
and a mouse as the best way? Instead, what if we could
communicate with our computer just like we do with
people? We have been trained for many years to use the
artifacts of keyboard and mouse to interface with our
computers; but that’s the whole point, we’ve been trained
to use them. Instead, we should be creating computer
interfaces that adapt to the way people communicate with
each other. In this area, we are on the cusp of a new age
in human-computer interaction. The technologies
necessary to support human-like communication with a
computer are slowly coming of age; and when they do,
everyone will be able to easily use a computer.

The next generation of human-computer interaction
will allow the user to interact with a computer system
using the language they speak to others with every day
and they get to choose how the computer will represent
itself to them. Getting a system to use spoken language as
an interface is just one piece of the puzzie. In order to
effectively communicate, most human beings require a
visual representation of who or what they are speaking to
in order to feel comfortable with this means of
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communication. Visual agents are a natural fit for this
responsibility. By creating a visual avatar for the
computer to use as the interface, the user feels more
comfortable with the interaction because now they are
talking to somebody. Additionally, a visual avatar can use
such techniques as body language and other body
movements to communicate on another level with the
user, just like human beings do [1]. Thus, ratural
language agents (NLA) refer to a type of user interface
agent that combines spoken language understanding and
visual agent technologies to create a simple to use
computer interface.

This paper proposes a framework for NLA in the
Microsoft (MS) Windows environment and discusses
some preliminary results. Section 2 covers the state of the
component technologies for NLA as they stand today.
Section 3 describes the proposed natural language agent
framework called Secret Agent. Some preliminary results
based on the Secret Agent framework are given in Section
4. Finally, Section 5 concludes the paper with some
remarks on future work.

2 Natural Language Agents

We have been exposed to natural language agents of
all types through TV and movies over the years.
However, there are many advances in fields other than
computer science, which are necessary to support that
level of technology. In the meantime, natural language
agent computer interfaces can be created using
technology available today that will allow an ordinary
person to communicate with their computer just like it is
another person. Ultimately, the agent could become the
user’s everyday friend and helper.

The components necessary to create a basic natural
language agent include 1) a user-selected visual agent
representation, 2) speech recognition, 3) speech synthesis,
4) natural language understanding, 5) an interface to the
system the agent is designed to help with, and 6) some
additional utility functions. The visual agent gives the
user a visual persona to which they can speak with during
their interaction in order to increase the comfort of
communicating with a computer. By giving the user
control over the visual representation of the agent, the
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user can customize and select the representation that is
most entertaining or interesting to work with. Next, the
speech recognition component allows the agent to
translate the physical speech utterances of the user into
meaningful words in the user’s language. Also, the
speech synthesis allows the agent to speak back to the
user for complete spoken interaction. Then, the natural
language understanding component is necessary in order
to translate the words that a user speaks into ideas and
concepts, so that the user can make meaningful requests
or have a conversation with the agent. Finally, an
interface to the system, which the agent is helping with,
allows the agent to enact the requests that the user might
make during a session with the agent. Additionally, more
components can be added to the agent to increase its
functionality and usefulness, including long-term
memory, adaptation of conversation to user preferences
and work habits, conversational capabilities, and others.
For some of the technologies that were just discussed,
there are a number of options available for Microsoft
Windows-based components, such as:
e  Visual Agent — MS Agent [2], CSLU Baldi [3]
e  Speech Recognition/Synthesis — MS Speech
SDK [4] supporting IBM, Dragon, MS, and
Lernout and Hauspie speech engines

For natural language understanding, the field is still in
the research phase (see MIT [5] and CMU [6]) though
some expensive commercial work is being done today by
Cycorp [7]. The remainder of the natural language agent
components will need to be custom built until natural
language agent technology becomes more common.

3 Secret Agent Framework

In general, an NLA has the structure shown in Figure
1. It includes all the components discussed in Section 2
and interfaces with both the application and operating
system. The Secret Agent framework (SAF) is designed
to encapsulate the visual agent and speech technologies
that are necessary for any NLA application.
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¥
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Recognition Synthesis
] 1
{Natural Language 'Natural Language
| Und ling | __ Gencration
Natural Language
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g w
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|
|
1
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Figure 1. Generic NLA framework.

The goal of the SAF is to base the framework on the
most publicly accessible and standardized components
that could be found for MS Windows. Since MS Agent
and the MS Speech API are the de facto standards for
visual agents and speech in MS Windows, they are chosen
for the SAF. Figure 2 shows the structure of the modules
in the SAF. A separate speech synthesis module is not
needed in this case, because it is incorporated into MS
Agent. Since the SAF incorporates visual agent and
speech technologies, it can be used in any number of
applications, such as tutoring and personal assistant
applications, that require these technologies.
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Figure 2. Secret Agent Framework (SAF).
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Since both of the visual agent and speech technologies
support the MS Component Object Model (COM) [8], the
SAF is implemented using C++ and direct COM
interfaces for maximum flexibility in control of the COM
objects provided by the technologies.

Additionally, the SAF provides a number of user
configurable options that are accessible via a dialog built
into the framework. Using these options, the user has full
control over the agent visual representation, speech
recognition engine and speech synthesis voice used for
the agent. Also, an optional speech window allows the
user to see what the agent has heard so the user knows
when the speech engine needs to be trained.

4 Some Example Agents

The first SAF-based NLA is based an old BBS door
program called Eliza. Joseph Weizenbaum originally
created Eliza as a challenge to the Turing test. Since Eliza
is based on the Rogerian mode of therapy in which the
therapist strives to eliminate all traces of his of her
personality from the dialog, Weizenbaum had planned to
show that the test could be beat through the use of ‘tricks’
instead of true ‘intelligence’ [9]. A conversation engine is
built into the NLA that would mimic the functionality of
the original Eliza application. The result is a natural
language agent that responds to everything the user says.
Depending on the complexity and topic of the
conversation, the agent can maintain the illusion of
conversationally competence anywhere from 2 responses
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to an entire conversation just like the original Eliza. This
NLA uses the same algorithms for the conversation
engine as the original Eliza application, but adds the extra
levels of visual agent and speech technologies.

The Eliza conversation engine is written in C++ as an
object, which could communicate with the Secret Agent
framework. With the response per utterance mode that
Eliza works in, the objects are easily integrated. The only
other key feature of interest is that Eliza uses a word
matching heuristic to approximate conversational
competency. Every word pattern handled by the
conversation engine is associated with a standard
response that may employ words in the user’s original
utterance. If words from the user’s utterance are used, the
words involved are conjugated and transposed to make
the response fit the user’s input. This is what gives the
user the perception of speaking to a psychiatrist. The
word patterns and responses are stored in a configuration
file that is loaded by the application at startup, and can be
easily modified and expanded.

Secret Agent
Framework

Conversation
Engine

Figure 3. Conversational NLA.

The second SAF-based NLA stems from the fact that
users will want a natural language agent to belp control
the applications that they use everyday. In this respect, we
choose a web browser as the application of choice. Two
factors are behind the selection of a web browser
application: the high demand for web centric applications
in today’s market, and the availability of a web browser
application interface. Using the SAF as the basis,
command-understanding capability, an interface to a web
browser and some limited OS interaction are added. To
approximate natural language commands, the following
methods are prototyped: continuous dictation, frame-
based grammar and a standard grammar. A standard
grammar is created for this NLA due to the simplicity of
creation and lack of ambiguity of speech during use. It is
also a standard natural language approximation technique
used by most modern speech recognition applications.

The technical work on the web browser agent is quite a
bit more complicated due to the interface with an
independent commercial application. Microsoft Internet
Explorer is chosen as the web browser in the experiment,
since MS provides classes that encapsulate a
programmable interface to the browser using COM
technology [10].

Most of the functions in the programmable interface
are enabled in this NLA. These functions include: simple
navigation commands (back, home, forward, etc.),
scrolling capability and application control (toolbars,
modes). Expansion is made to the functionality by
allowing the user to navigate hyperlinks on a page
through spoken commands. There are two parts to this
feature. For text links, a routine is called after a page is
loaded to dynamically update the grammar used by the
speech recognition engine. For other links (such as
pictures), another routine intercepts the incoming HTML
page and adds numbers to each of the hyperlinks on the
page, which can then be spoken to navigate to those links.
Additional application capability is added to allow the
user to verbally select buttons on dialog boxes that might
come up during a typical web browsing session. Finally, a
simple help section is added which outlines how the agent
works as well as a list of supported commands. All the
help and command information is stored in text files
which can be modified and expanded. A detailed
discussion on these two experiments can be found in [11].
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Figure 4. Web browser NLA.

5 Conclusion

The two example agents are just the tip of the iceberg
of what can be done with the SAF and other technology
available today. The conversation agent could be
programmed with a better natural language paradigm to
allow it to interact in a more realistic way with the user.
The web browser agent could be enhanced by creating
interfaces to more applications (e-mail, word processing,
etc.). Both of these experiments represent only two facets
of the ultimate goal for NLA: to create conversationally
competent NLA that can be used as the complete interface
to a system.

In order to achieve the goal of NLA, there are a
number of things that need to happen. First, natural
language understanding engines need to be created which
can succeed in the domains that users want to use natural
language technology. Next, any application that would
like to interface with a natural language agent needs to
provide an interface through which the agent can control

102




the application. Finally, the agent needs to be able to [5] “MIT: Spoken Language Systems”, Massachusetts
make the user feel comfortable by being able to learn and Institute of Technology, Accessed Nov. 6, 1999,
act like another person. Once these steps are achieved and http://www.sls.lcs.mit.edu/sls

integrated, NLA agents will become common fare.
[6] “Language Technologies Institute”, Carnegie Mellon

So what’s next? In the near future, NLA or University, Accessed Nov. 6, 1999,

comparable technology will be a standard OS component http://www lti.cs.cmu.edu

in the consumer computing marketplace. Already,

products such as IBM ViaVoice Millennium [12] are [7] “Cycorp: Makers of the Cyc Knowledge Server for

filling the void by creating the first commercial versions artificial intelligence-based Common Sense”, Cycorp

of NLA. ‘ Inc., Accessed Nov. 6, 1999, http://www.cyc.com
[8] S. Williams, and C. Kindel, “The Component

References Object Model: A Technical Overview”, Microsoft
« . ' Corporation, Accessed Nov. 6, 1999,

[1] “Intelligent User Interfaces”, about.com (09/28/99), http://msdn.microsoft.com/library/techart/msdn_com
Accessed Nov. 7, 1999, v htm
http://ai.about.com/compute/software/ai/library/week ppr-
ly/2a092899.htm [9] J. Weizenbaum, “Eliza”, Communications of the

[2] “Microsoft Agent Home Page”, Microsoft ACM, 9:36-45, 1966

Corporation, Accessed Nov. 6, 1999,

http://msdn.microsoft.com/msagent [10]“Reusing Browser Technology”, Microsoft
: . . g

Corporation, Accessed Nov. 6, 1999,
http://msdn.microsoft.com/workshop/browser/default

[3] R.A. Cole, “Tools for Research and Education in asp

Speech Science”, Center for Spoken Language
Understanding, Accessed Nov. 6, 1999,

http://cslu.cse.ogi.edu/tm/ron_icphsl.html [11]3. P. Gregory, Natural Language Agents, Master

Degree thesis, Department of Computer Science,
California State University, Sacramento, December

[4] “Intelligent Interface Technologies - Speech 1999
Application Programming Interface (SAPI)”, : ’
Microsoft Corporation, Accessed Nov. 6, 1999 ST 3 . . .
. o o o ’ [12]“ViaVoice”, International Business Machines (IBM)
http://microsoft.com/iit/projects/sapisdk.htm Corporation, Accessed Nov. 6, 1999, http://www-

4.ibm.com/software/speech

103




Implementing Metcast in Scheme*

Oleg Kiselyov
Software Engineering, Naval Postgraduate School, Monterey, CA 93943
oleg@pobox.com, oleg@acm.org

Abstract

This paper presents a case study of implementing a large dis-
tributed system in Scheme. Metcast is a request-reply and
subscription system for dissemination of real-time weather
information. The system stores a large amount of weather
observation reports, forecasts, gridded data produced by
weather models, and satellite imagery. A Metcast server
delivers a subset of these data in response to a query for-
mulated in a domain-specific language. Decoders of World
Meteorological Organization’s data feed, the Metcast server,
XML encoders and decoders, auxiliary and monitoring CGI
scripts are all written in Scheme.

This paper considers two examples that demonstrate ben-
cfits of our choice of the implementation language: parsing
of the data feed and a module system for the Metcast server.
We will also discuss extensions to Scheme as well as perfor-
mance.

1  Overview of Metcast

Metcast is a request-reply and a subscription system for
distributing, disseminating, publishing and broadcasting of
real-time weather information [1]. The system comprises
clients and scrvers communicating in an HTTP protocol.
A Metcast server maintains a database of weather observa-
tion reports, forecasts, advisories, gridded data produced by
weather models, as well as of satellite imagery and plain text
messages and discussions. A Metcast client uses a web form
or a domain-specific, flexible request language to retrieve
a subsct of data from a Metcast database [2]. A Metcast
server ~ which is an application (web) server - parses re-
quests, queries the database and sends the requested data
in a single- or a multi-part reply. A server may act as a
client to request a subset of data for further redistribution.
Metcast servers are in operation on several U.S. Navy Me-
teorology and Oceanography centers worldwide. Clients are
deployed on great many sites throughout the U.S. Navy as
well as U.S. Air Force, DoD. NATO, NOAA and other gov-
ernment agencies.

One particular source of original data is World Mete-
orological Organization's (WMO) data feed, containing a
great number of land and sea surface and depth/height pro-
_file reports, forecasts, advisories, discussions, etc. - for the
whole globe. A set of decoders processes the feed, and stores

*This work has been supported by SPAWAR PMW-185, FNMOC
and in part by the National Research Council, Naval Postgraduate
School, and the Army Rescarch Office under contracts 38690-M A and
40473-MA-SP.

raw and decoded data in a database. A Metcast server dis-
tributes this information in an XML OMF format [3).

The Metcast server, the set of decoders for various WMO
data formats, auxiliary and monitoring CGI scripts are all
written in Scheme. Metcast clients are written in C++,
Java, Scheme, Perl, Python, JavaScript, and Visual Basic.

The server and related modules are implemented in 12800
lines of Scheme code, counting the comments. WMO data
feed decoders add 8400 more lines. The size of common
extension libraries is 5400 lines of Scheme and some embed-
ded C code. A Gambit-C 3.0 Scheme interpreter enhanced
with compiled-in extensions has been used throughout the
project.

2 Parsing of the data feed

Scheme proved to be particularly helpful in parsing of the
WMO data feed. WDMO code is a rather old, ad hoc, pe-
culiar, somewhat inconsistent. tangled data format with a
number of options, exceptions and special cases. Further-
more, received bulletins often contain errors due to manual
miscoding and transmission problems. )
A typical WMO report - for example, a surface synoptic
report - is a sequence of code groups separated by white
space. A code group is a string of letters, numbers and
a few special characters. A code group or groups encode
the result of observation of a particular quantity, e.g., clou‘d
conditions, temperature, etc. If code groups were atomic
tokens, a report could easily be parsed by a2 LR(1) automa-
ton. Alas, code groups are composite entities that enche
information in idiosyncratic ways. The mere identiﬁgatx_on
of a code group depends on its position and context, which
may encompass all previously seen code groups. o
We have implemented a report decoder as a combination
of a table-driven automaton and code-based group parsers.
The latter recognize, parse, and validate a particular code
group. The decoder takes a list of code groups and returns
an associative list, an Abstract Syntax "Tree" (AST). A spe-
cial procedure later walks the AST and records the parsed
data in a database upload buffer. Of a particular help was
Scheme’s ability to store and pass procedural values as any
other values. This let us implement decoders as compost-
tions of code group parsers. For example, a very t}’PlQal pro-
duction <a>? <b>+ <c>? can be parsed by a combination

(sequence parse-a (sequence (loop parse-b) parse-c)).

This composition of group parsers is represented by a list

(parse-a (repetition-flag parse-b) parse-c). Given this

list and the list of code groups to decode, a main driver Waltliis
both lists, applying the current parser to the current code
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group. The resuit of the application as well as the repeti-
tion flag determine if the current code group is consumed, if
the next parser should be chosen, and how AST should be
extended.

All the group parsers have the same interface. They
receive as arguments the current code group and the AST,
and should return:

® an association (a name-value pair) or a list of such
associations to add to the AST;

¢ asymbol pass if the parser failed to recognize the code
group. The code group should be given to the next
parser;

¢ #f meaning a syntax error is detected at the current
token;

* asymbol terminate to stop parsing of the report.

In the successful case (the first one above), the current token
is assumed consumed. Any group parser may examine the
AST (that is, the results of the previous parsers) and may
even modify the AST. Therefore our parsing technique is
somewhat similar to attribute grammars. Figure 1 shows
an example of a group parser.

The example demonstrates an and-let= construction (srFI-
2), which was used frequently throughout the project and
proved very helpful. As Fig. 1 shows, once the current token
has been recognized as a potential <temperature-dew-point>
group. and-let= carries on a sequence of elementary parsing
decisions, all of which must succeed.

The Metcast decoder is continually processing incoming
files, which are delivered every 1-3 minutes. A rather large
batch of reports - 8 plain-text bulletins, 144 sea surface ob-
servation reports, 777 upper-air level data, 2 terminal air-
drome forecasts and 322 synoptic reports - takes 8 wall-clock
seconds to parse and 19 seconds to upload and record into
the database. The platform is Sun Enterprise-450 server
with two Ultrasparc-11 ¢pUs and 512 MB RAM, running So-
laris 2.6 and Informix 7.3 database. Keeping in mind that
incoming reports have up to 10-minute delay from the time
of issue, the total processing time at the Metcast end - under
1 minute - is entirely acceptable.

3 Implementing the Web application server

Scheme turned out to be a good implementation language
for a web application server as well. One part of the server
is a complex finite state machine that decides when a multi-
part reply is called for, and sends the corresponding MIME
headers. The problem is not trivial as it is generally im-
possible to predict the number of non-empty replies for a
complex request. Expressing such finite automata as sets
of mutually-recursive procedures made the code clear and
flexible.

Scheme was conducive to compilation and interpretation
of the S-expression-based Metcast Request Language [2]. A
request language phrase is compiled into a dictionary ~ an
ordered sequence of bindings, ~ which coastitutes the en-
vironment 1o look up all data needed to construct a Met-
cast database query. This hierarchical repository follows
neither the static scope of Scheme expressions, nor the dy-
namic scope of procedure activations. Some bindings may
be to procedures, which may push additioral associations
into the environment and thus affect further lookups.

Metcast server has a highly modular structure. The main
program is responsible for receiving and parsing of a request,

and packing of replies. Execution of a particular product re-
quest is delegated to a separate module (plug-in). The hier-
archical repository was indispensable in implementing a pa-
remeter bus, which maintains the configuration for the main
server and all plug-ins. The parameter bus also provides a
uniform interface for invocation of modules and passing of a
complex set of explicit and default parameters. For example,
the main Metcast server module contains a form (include
"metar.scm") that loads a plug-in metar.scm. The latter file
defines procedures perform-metar-request and perform
MSL-request. The file binds these procedures to the cor-
respouding Request Language verbs and the configuration
information:

(env#binde«
‘((METAR (executor . ,perform-metar-request)
(mime-type . "text/x-omf"))
(MSL (executor . ,perform-MSL-request)
(mizme-type . "text/x-msl"))
(0OBJ-LOADER:st_constraint
, (lambda constr-1
(env#bind st_constraint constr-1))) ))

When metar.scm is loaded, the above initialization expres-
sion is evaluated. The Metcast server thus gains an ability
to process requests for METAR and MSL products. The main
server module contains a long chain of (include "xxx.scm")
expressions, which define a set of requests a server accepts.
Adding or replacing support for a particular product re-
quests is as simple as loading or reloading the corresponding
plug-in. This re-configuration and linking-in of the modules
is possible while the server is running - although we have
not pursued this opportunity. The flexible module linking
mechanisin was beneficial even in the static case as it made
incremental development and evolution of the server easier.

4 Extensions to Scheme

Implementing Metcast required several extensions of the
Gambit-C Scheme system: libraries of common procedures,
and interfaces to external applications and the OS. Detailed
descriptions for all extensions along with the commented
source and validation code are freely available from a web
site [4].

We have already mentioned one helpful extension: and--
lets, an AND with local bindings, a guarded LET* special
form. An input parsing library was another extension. Itisa
set of procedures that either skip, or build and return tokens
following inclusion or delimiting semantics. The input pars-
ing library has been used on very many occasions: in sPht-
ting WMO data feed files into bulletins and bulletins into
code groups; in parsing of a QUERY_STRING or HTML form
POST submissions; in breaking the response stream from a
database query into rows and columns of data; in parsing of
XML.

Another kind of extension - made possible by Gamb.it’s
excellent Foreign Function Interface — deals with accessing
processes, files, directories, communication pipes and othex:
objects external to a Scheme system. Scanning of a PO.SI‘.\
directory is implemented in a truly Scheme style and spirit:
The OS:for-each-file-in-directory iterator combings the best
features of for-each, map, and filter, and permits prema-
ture termination of iterations.

A very helpful extension that goes far beyond Scheme
is opening and communicating through uni-, bx-dxr.ectlonal,
and TCP pipes as if they were regular files. T.hls.exten-
sion allows Scheme code to talk to external applications or
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; <temperature-dev-point> (1= <temp> "/* <dev-point>?
i <temp> ::= wyn? <two-digits> <dev-point> ::= wywe <tvo-digits>
(lazbda (token AST) i "/" must be either in the Pos 2 or 3
(let ((slash-pos (string-inder token #\/)))
(if (not (memv slash-pos 7(2 3))) ’pass
(and-lets
((negate (lambda (x) (and x (- x))))
(tempr
(if (char=? #\M (string-ref token 0))
(negate (string->integer token 1 3))
(string->integer token 0 2)))
(dp-pos (++ slash-pos))
(dp (if (>= dp-pos (string-length token)) ’none
(if (char=? #\M (string-ref token dp-pos))
(negate (string->integer token (++ dp-pos) (+ 3 dp-pos)))
(string->integer token dp-pos (+ 2 dp-pos))))))
(if (eq? dp ’none)
(cons ’T tempr) 1
(1ist (cons T tempr) (coms ’DP dp)))))))

Figure 1. A <temperature-dew-point> group parser l
internet services. One particular kind of such an external 6 Conclusions
application is a command-line SQL tool, which allowed yus L
to build a portable database’access library [4]. A database Implementation of a web application server and WMO de-
query interface is implemented in a Scheme spirit as well, as coders in Scheme showed that che Ia.x.lguage IS up to the
a general iterator over a collection of selected rows. task. The elegance of Scheme and its ability to easily express

guarded execution, finite-state machines as sets of mutually
recursive actions, hierarchical repositories with procedural
bindings turned out to be most important. Built-in ga.rb'?tge
Choosing an implementation language other than C or C+ = collection, iterators, safety, the ease of mcge’fnentf'zl ;;slt.mg
inevitably raises the question of performance. Ve have run cannot be overestimated either. ‘Dcspxtfe ° uous.lng Clené
several benchmarks to ascertain the total performance and cies, 8o far overall Metcast server performance is deeme
its contributing factors. For example, a sample request that satisfactory by customers.

retrieves 707 WMO messages (totaling §211C of output) took

5 llusory and real difficulties

25.6 sec (real), 24.1 sec (user) and under 0.1 sec of the system References

time. This running time comprises: loadine and interpreta- i

tion of the Metcast server script. database connection and {1] Oleg Kiselyov, "Distributing \\eat.her Products throggh
query, Request Language interpretation, and output format- an HTTP pipe" httpi//ZO"Ie-mefnet'na"Y'ml/
ting. We conducted several experiments to isolate each of  SPawar/JMV-TNG/ http://pobox.con/ oleg/JMV-TNG/
these factors, on the Sun E450 platform described above. March 10, 2000.

Connecting to a database with a SQL command-line tool
dbaccess and running the query took 1.3 sec (real) and 1.0
sec (user). Thus the database interface - however ugly and
inefficient it looks - is not the bottleneck. Parsing of the

[2] Oleg Kiselyov, "A delegation language to request
. weather products and a scheme of its interpretaqon,
Proc. third ACM SIGPLAN Int. Conf. on Functional

database reply in (interpreted) Scheme code adds 3.8 sec Programming (ICFP 98), Baltimore, Maryland, Sep. 27
(real) and 2.2 sec (user) time. That is noticeable yet in- 29, 1998, p. 343.

significant compared to the total time above. Instrumenta- 3] Oleg Kiselyov, "Weather Obser-
tion of the Metcast server showed that the server start-up vation Definition Format" http://zovie.metnet.navy.
time is under 1.0 sec of real time. This fact was one of the mil/”spavar/JMV-TNG/XML/OMF.htnl March 8, 2000.
two biggest surprises. Given the complexity of the start-up

process - launching of the Gambit interpreter, reading of [4] Oleg Kiselvov, "Scheme Hash," An archive of Scheme
the main script and 15 included scripts totaling 12800 lines code http://pobox.com/~oleg/ftp/Scheme/ July 4,
of code. macro-expansion and byte-compilation - one would 2000.

have expected the Start-up to be a significant factor if not
the bottleneck. The other biggest surprise was the fact that
the most of the running time - 20 seconds - was spent within
7 lines of code, which copy characters from one stream to
another while unescaping newlines. A makeshift optimiza-
tion ~ copying streams line-by-line rather than character-by-
character, and utilizing Gambit’s undocumented function
##urite-substring - reduced the benchmark real running
time from 23.6 sec down to 17.0 sec.
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SUMMARY

We suggest that empirical studies of maintenance are difficult to understand unless the context of the
study is fully defined. We developed a preliminary ontology to identify a number of factors that influence
maintenance. The purpose of the ontology is to identify factors that would affect the results of empirical
studies. We present the ontology in the form of a UML model. Using the maintenance factors included in
the ontology, we define two common maintenance scenarios and consider the industrial issues associated
with them. Copyright € 1999 John Wiley & Sons, Ltd.

KEY WORDS: empirical research: maintenance factors; maintenance scenarios: evolutionary maintenance: independent
maintenance groups: maintenance ontology

1. INTRODUCTION

This paper arose from a discussion session held at the 3rd Annual Workshop on Empirical Studies
of Software Maintenance (“WESS "98°). The task of the session was to consider the question ‘What
are the differences between maintenance tools/methods/skills and those of development?” From the
point at which members of the group stated their preliminary positions, it was evident that we would
find it difficult to give a single answer. The position statements ranged from what can be paraphrased
as “Nothing much’ to “Lots of stuff.’

*Correspondence to: Dr. Barbara A. Kitchenham. Department of Computer Science, Keele University, Staffordshire
ST5 5BG. U.K. Email: barbara@cs.keele.ac.uk

CCC 1040-550X/99/060365-25517.50 Received 10 May 1999
Copyright © 1999 John Wiley & Sons. Ltd. Revised 23 September 1999
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As the discussion continued. it became clear that our difficulties arose from our different views
of what constituted ‘maintenance”. We concluded that we could not answer any serious questions
about maintenance methods, tools or skills until we had a description of maintenance rich enough
to encompass all our different experiences of maintenance. We concluded that what we needed was
an ontology of maintenance—that is. a specification of a conceptualisation (Gruber. 1995). This
ontology should not be only a hierarchy of terms. but a framework talking about the maintenance
domain and identifying the factors that affect maintenance. supported by a taxonomy describing the
different factor levels.

We believe that such an ontology would have four mgjor benefits for the maintenance research
community. It would:

I. allow researchers to provide a context within which specific questions about maintenance can

be investigated:

help to understand and resolve contradictory results observed in empirical studies;

provide a standard framework to assist the reporting of empirical studies in a manner such

that they can be classified. understood and replicated: and

4. provide a framework for categorising empirical studies and organising them into a body of
knowledge.

(VNI 0 ]

Furthermore. if we could report our research results in a systematic fashion. clarifving the context
to which the results apply. it would also help industrial adoption of research results.

In Section 2. we present an overview of the ontology. In Section 3 we describe our proposed
maintenance ontology in more detail. In Section 4. we look at two maintenance scenarios and
consider how the ontology can be used to help characterise the difference between the scenarios.

2. OVERVIEW

de Almeida. de Menezes and da Rocha (1998) describe the process of constructing an ontology
as involving the following activities:

e purpose identification and requirement specification:
e ontology capture and formalisation:

e integration of existing ontologies: and

e ontology evaluation and documentation.

Knowledge captured in an ontology is usually represented in a graphical notation. For instance.
GLEO (Graphical Language for Expressing Ontologies) was used to describe a software process
ontology (de Almeida. de Menezes and da Rocha. 1998).

In this paper, we consider only a part of the ontology construction process. We consider only
purpose identification and requirement specification and ontology capture. Moreover. since we do
not intend to provide a formal description. we present our ontology in a subset of UML (Unified
Modelling Language) notation (Fowler and Scott. 1997; instead of GLEO. UML has been used by
other researchers to describe knowledge. For example, Hasselbring (1999) used UML to describe
knowledge concerned with health care information systems. Since UML is a standard object-
oriented notation. we believe it will make our ideas more accessible to software engineering and

Copyright € 1999 John Wiley & Sons. Ltd. J. Saftw. Muint: Res. Pract. 11. 363389 11999)
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Maintenance Activity Types Product
Corrections Size
New Requirements DE Age
Requirements Changes Type
Implementation Changes Composition
MAINTENANCE <9
@ PROCESS %
Peopleware Process Organisation
Skills Engineering Management
Attitudes Group Organisation
Customer and User 5 & Methods
Resources
Technology

Figure 1. Overview or domain factors affecting sofovare maintenunce

software maintenance researchers. Furthermore. it is possible to improve the representation of the
ontology at a later date by inserting the axioms needed to formalise the whole model.

As aresultof our discussions at the WESS 98 workshop. we identified a number of domain factors
that we believe influence the maintenance process. Figure 1 shows these factors and how they can
be classified. Figure 1 was the starting point for our ontology. which is described in more detail
in Section 3. In order to describe empirical maintenance research. we believe that the maintenance
factors must be specified. This will allow researchers to better understand the maintenance context
and to plan the research needed to investigate the relationships among these factors and the
maintenance context. A better understanding of the relationships that exist between factors and
context should lead both to improvements in the maintenance process and to the development of
new research topics.

The maintenance process describes how to organise maintenance activities. It is similar to the
software development process. but the focus is on product correction and adaptation, not just
on the transformation of requirements to software functionality. We take the same viewpoint
when considering methods and tools. It is not usually necessary to define new methods or
tools to accomplish maintenance activities: conventional software development tools are usually
sufficient. However. the maintenance process defines how these methods and tools should be applied
to maintenance activities. and which skills and roles are necessary to carry out the activities.
Previous research work has considered the definition of methods (Karam and Casselman. 1993),
process description (Pfleeger. 1998). software environment ontology (de Almeida. de Menezes
and da Rocha. 1998). and tool classification (Pressman. 1997). Although these research results
considered the software development process as the basic framework. they are also useful in the
context of the maintenance process.

In order to understand the relationships among maintenance domain factors. we need to specify
each factor and define the impact that it has on maintenance activities. Next. the relationships
themselves can be captured and validated. Validation usually requires empirical studies and
experiments.

Copyright © 1999 John Witev & Sons. Lid. J. Softw. Maint: Res. Pract. 11. 365-389 (1999)
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Figure 1 has some similarities with the framework for software maintenance suggested by
Haworth. Sharpe and Hale (1992). They defined a framework based on four entities: programmer.
source code. maintenance requirement and environment. They suggested that each of these basic
entities in the framework interacted to a degree with the other entities. Each of the entities and
each combination of possible interactions contribute 1o a research area and define the type of
attributes that can be manipulated. For example. one area of research is source code attributes.
and another is the interaction between source code attributes and programmer attributes. They
use the areas to classify existing research and discuss the way in which experiments aimed at
considering interactions could be designed. In our ontology. we have generalised the concepts
of maintenance requirement. source code and programmer to maintenance activity. product. and
maintenance engineer respectively. We have also introduced another concept: the maintenance
organisation process. We have omitted an environmententity because our more generalised concepts
include environmental considerations. The main difference between the Haworth, Sharpe and Hale
framework and our ontology is that they are concerned with the structure of empirical experiments.
So. they are not concerned with the nature of the attributes attached to each of their entities. whereas
our main concern is the attributes and the way in which they define the context of empirical research.

3. THE MAINTENANCE ONTOLOGY

3.1. Purpose specification and requirements specification

Before discussing our conceptualisation of the maintenance domain. we need to consider the
first stage of ontology development. which is purpose specification and requirements specification.
de Almeida. de Menezes and da Rocha (1998) define the activity of purpose specification to be
‘to clearly define its purpose and intended uses, that is. the competence of the ontology’. The
competency of the ontology identifies the questions the ontology is meant to answer.

In our case. the purpose of our ontology is to identify contextual factors that influence the results
of empirical studies of maintenance. For example. suppose a researcher were investigating the
impact on productivity of new maintenance tools but did not specity the experience of the tool users.
In this case. it would be difficult for other researchers to replicate the study. or for practitioners to
know whether or not the results were likely to apply in their own situation. Furthermore. it is not
Just the experience of tool users that is likely to affect the study’s results and their interpretation.
Other factors that need to be specified include the type of product being maintained, and the type of
maintenance tasks being performed.

In observational studies of maintenance. researchers measure maintenance performance
characteristics such as the quality of maintained products. or the productivity or efficiency of
the maintenance process for different products or different maintenance activities. in order to
identify how and why these performance characteristics vary. In controlled experiments. researchers
investigate the impact of one or more factors that they believe affect maintenance quality or
productivity by varying the factors in a systematic fashion. while controlling other factors.

Thus. in order to support empirical studies of both kinds. each factor in our ontology needs to
answer the following competency question:

Would variations in this factor (i.e.. concepr) influence empirical studies of
maintenance productivity, quality or efficiency”

Copsright T 1999 John Wilev & Sons. Lid. J. Softw. Muint: Res. Pract. 11. 365-389 (1599)
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For the purposes of ontology capture. we do not believe it is necessary to identify every possible
interaction between maintenance factors and maintenance performance. However. we do need to
present a reasoned argument explaining at least one interaction for each factor. This can also be
regarded as a contribution to ontology evaluation. Any such explanation would depend on being
able to identify the way in which each element can vary in different circumstances. This implies a
second competency question:

What is the nature of the variations in this factor?

This second question leads to preliminary taxonomies of maintenance elements. The taxonomy is
also intended to help practitioners identify whether or not empirical results are likely to be relevant to
their specific maintenance situation. The two competency questions already identified are sufficient
to represent the viewpoint of practitioners as well as researchers.

Finally. we hoped that our taxonomy would also cast some light on our original workshop goal.
which was to consider the differences between maintenance and development from the viewpoint
of skill. tools and methods. This leads to a third and final competency question:

To what extent do maintenance methods/tools/skills differ from those of development?

To address this question fully. we would need a software process ontology as well as a
maintenance ontology. Thus. we have not addressed this competency question fully. We do,
however. point out some of the differences we found between our maintenance ontology and the
de Almeida. de Menezes and da Rocha software process ontology. and identify some concepts that
are of relevance only to maintenance.

The following sections define our ontology. Because the domain is very complex, we describe '

each main dimension shown in Figure 1 separately. with the final integrated ontology shown later
in Figure 7. In the next sections we present our ontology of software maintenance with definitions
of all the main concepts (i.e., maintenance factors). Where possible. we make use of definitions and
concepts used by de Almeida. de Menezes and da Rocha (1998) in their software process ontology.
We also consider the different properties of the maintenance factors that impact the maintenance
process and can thus affect the results of empirical studies.

3.2. DMaintained product

3.2.1. Overview

Figure 2 shows our product ontology. Table 1 defines the concepts used in the ontology.
Characteristics of these elements that affect maintenance performance are discussed in the following
sections. Note that in their software process ontology. de Almeida. de Menezes and da Rocha do not
consider the relationship between the total product and its composite artefacts.

3.2.2.  Product size

The size of the product affects the number and organisation of the staff needed to maintain it.
Table 2 suggests a coarse-grain size measure for classification purposes. There are relationships

Copyright € 1999 John Wilev & Sons. Lid. ’ J. Sorrw Mainz: Res. Pract. 11. 363389 (1999)
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Fizure 2. The maintained product ontology
Table 1. The maintained product ontology definitions
Product The product is the software application, product or package that is undergoing
modification. A product is a conglomerate of a number of different artefacts.
Product A change to the buseline product that implements or documents a maintenance
upgrade activity. An upgrade may be a new version of the product. an object code patch,
or a restriction notice.
Artefact Artefacts that together correspond o a software product can be of the following

types: documents that can be subdivided into textual and graphical documents,
COTS products. and object code components. Textual documents include source
code listings. plans. design and requirements specifications.

Table 2. Product size

Product size Maintenance team size

Small | person
Medium 1 team
Large Multiple teams

between the size measure and maintenance team organisation. For example, geographically
distributed maintenance teams usually maintain large products. The size of the enhancements and
the size of the product are likely to affect maintenance productivity. The larger the product the more
likely it is that product knowledge will be spread unevenly among the maintenance staff, making
it more difficult to diagnose the cause of some problems and identify all the modifications needed
to support a large enhancement. In addition, when many people are working together on a large
enhancement, there are more opportunities for misunderstandings that can lead to quality problems.

Thus, maintenance activities on large products may be less productive than maintenance activities
on small products.

3.2.3.  Application domain

Many researchers (e.g.. Maxwell, van Wassenhove and Dutta, 1966) have observed major

Copyright © 1999 John Wilev & Sons. Ltd. J. Sotnv. Maini: Res. Pract. 11, 365-389 (1999)
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productivity differences between products from different application domains. We believe such
differences apply to maintenance activities as well as development activities. In addition. the
application domain (e.g.. finance. telecommunications. command and control. etc.) places domain
knowledge requirements on maintenance human resources. It also places constraints on the
maintenance artefacts and product. For example. safety critical system maintenance must. at all
cost, preserve software reliability requirements. whereas in the telegommunications world there is
more emphasis on fast upgrades to software in order to minimise time to market. These different
constraints mean that different aspects of maintenance performance are optimised.

3.2.4.  Product age

The age of a product (i.e., the age in years since first release) can affect maintenance in different
ways:

e If the development technology is very old. it may be difficult to tind maintenance human
resources with sKills in the old technology (hence. the practice of "grey-sourcing” the
maintenance of some products by bringing older programmers out of retirement). In addition.
it may be difficult to find support tools. such as compilers and static analysers. and support
for the tools.

o If the product is old. it may be difficult to access the original developers or the original
development documentation. This can lead to products or parts of products that no one
understands well enough to change.

Thus. in general we expect maintenance performance to be better for younger than older products.

3.2.5.  Product maturity

Product maturity is different from product age. It concerns the life cycle of a product after initial
release. The basic phases in the life of a product and their relationship with maintenance tasks
and user population are summarised in Table 3, which is similar to the life cycle described by
Kung and Hsu (1998). The maintenance life cycle starts at first release and ends when a product
is withdrawn from use. It is important to note that large enhancements cause mini-cycles, where
a product can be forced back into periods of infancy and adolescence as a result of poor quality
product releases. Table 3 suggests that the type of maintenance tasks undertaken by an organisation
is related to the maturity of a product. as is the size of its user population. Note that a consideration of
user population is irrelevant for some custom-built products that have a single client-single mission
profile.

3.2.6. Product composition

The level of abstraction of the component artefacts of a product affects the skills required by
maintenance engineers and the tools they need to support them. If products are generated from
designs. maintenance engineers nead access to the code generation tools. If the product is composed
of black box components (e.g.. a COTS product). maintenance engineers need integration skills
rather than coding skills.

Copyright € 1999 John Wilev & Sons. Lié. J. Softws Maint: Res. Pract. 11. 363-389 (1999)

113




B. A.KITCHENHAM ET AL.

Table 3. Maintenance life cycle

Maintenance task

Life cycle stage prevalence User population
Infancy—after release. initial users start reporting  Corrections Small

defects.

Adolescence—as the user population grows. defect  Corrections. Growing
reports still predominate but there may be changes to  requirement

amend the system behaviour. changes

Adulthood—the product is relatively defect free. but if New requirements.  Maximum
it is accepted by a wide user population there will be implementation

requests for new functionality. In addition. as change  changes

accumulates there will be a need to restructure parts of

the system to avoid design decay. so implementations

changes to improve code structure may be required.

Senility (legacy)—there are newer products available and  Corrections Declining
only a few users remain to be supported. Usually only

corrective maintenunce and workarounds are provided.

3.2.7.  Product and artefact qualiry

The original software development process and the quality of the product it delivered place
constraints on the subsequent maintenance process. In our experience it is easier to maintain a
good quality product than a poor quality product. where "quality” includes issues such as product
structure. documentation. and the quality of individual artefacts. Furthermore. the less contact a
maintenance organisation has with the original software developers. the more it is dependent on
the availability of good quality documentation. bearing in mind that there are many different forms
of documentation associated with a software product. In terms of defining the impact of document
quality on maintenance activities. we need to assess the extent to which documentation is:

e complete.
e accurate. and
e readable.

For old products. documentation is often poor or non-existent. In such cases. maintenance
engineers need specialised tools such as re-engineering tools. Thus, comparisons of maintenance
performance across different products will be of limited value unless it is clear that the maintenance
tool requirements of each product have been met to an equivalent degree. and that the quality of the
component artefacts is comparable.

3.3. Maintenance activities

Figure 3 shows our maintenance activity ontology. which is derived from de Almeida. de Menezes
and da Rocha’s software development activity ontology. We have amended that ontology to consider
maintenance activities rather than software construction activities. and have omitted elements that

Copyright © 1999 John Wilev & Sons. Lid. J. Sufne. Muine: Res. Pract. 11, 365-389 (1999)
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Fiure 3. The maintenance activire ontology

do not have any major impact on maintenance performance. In particular. we have added the
concept of an investigation activity, and. instead of having a construction activity. we have a
maintenance activity. Furthermore. we have identified configuration management as one of the
types of management activity. We have also included the resource concept in this ontology. whereas
de Almeida. de Menezes and da Rocha (1998) had a separate resource ontology. Definitions of
the elements in the ontology are given in Tuble 4. A discussion of the impact of the elements on
maintenance performance follows.

In our view. one of the major differences between software development and software
maintenance is that development is requirement-driven and maintenance is event-driven. This means
that the stimuli (i.e.. the inputs) that initiate 2 maintenance activity are unscheduled (random) events.

Input events usually originate from the users (or client or customer) of the software application.
but may also originate from maintenance human resource (engineers or managers). Thus. the first
activity needed by a maintenance process (after the administrative process of logging the event) is
an investigation activity. whereby a maintenance engineer is assigned to assess the nature of event.
which can be either a problem report or change request. On completion of an investigation activity.
maintenance managers must decide whether or not to proceed with a maintenance modification.
This is discussed in more detail in Section 3.4.3.

Maintenance modifications are often referred to as corrective. adaptive or perfective following
Swanson’s typology (Swanson and Chapin, 1995). However. since identifying a modification as
an adaptive or a perfective maintenance activity depends on the reason for the change. and not
on an objective characteristic of the change. we have used the following definition for types of
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Table 4. Maintenance activity ontology definitions

Activity An action of one of the following types: an investigation activity. a modification
activity. a management activity. or a quality assurance activity. An activity may
be made up of a number of sub-activities. Usually. it takes as input one, or more
existing artifacts and outputs zero. one or many new or modified artifacts.

Investigation  An activity that assesses the i impact of undertaking a modification arising from a
activity change request or problem report.

Modification  An activity that takes one or more input artefacts and produces one or more
activity output artefacts that. when incorporated into an existing system. change its
behaviour or implementation.

Management  An activity related to the management of the maintenance process or to the

activity configuration control of the maintained product (see Figure 5 and Table 6).

Quality An activity aimed at ensuring that a modification activity does not damage the

assurance integrity of the product beino maintained. Quality assurance activities may be

activin classified as testing or certification activities (entity omitted from Floures 3
and 7).

Resource Everything that is used to perform an activity. Resources may be hardware,

software or human resources.

maintenance changes

e Corrections that correct a defect—ie.. a discrepancy between the required behaviour of a
product/application and the observed behaviour.

* Enhancements that implement a change to the system that changes the behaviour or
implementation of the system. We subdivide enhancements into three types:

e enhancements that change existing requirements,
e enhancements that add new system requirements. and
e enhancements that change the implementation but not the requirements.

Broadly speaking. enhancements that are necessary to change existing requirements can be
equated to Swanson’s perfective maintenance changes. Those that are necessary to add new
requirements to a system can be equated to adaptive maintenance. Changes that do not affect
requirements but only affect implementation might be referred to as preventive maintenance (by
analogy to what happens when you have your car serviced). Note that corrections may result in
similar types of product modifications. but we do not feel that it is necessary to define correction
subtypes.

There is not a one-to-one relationship between problem reports and corrective maintenance.
Sometimes. the ‘problems’ noted by users are requests for behaviours that were not originally
required. In such cases. the problem report leads to an enhancement rather than a correction. It
Is important to determine whether maintenance work is a correction or an enhancement because the
activities are often budgeted separately. In fact. many of the disputes between the customer/client
and maintainers revolve around whether a change is a correction or an enhancement. If the
customer/client did not fully and unambiguously define the required behaviour. it is often difficult
to decide whether a modification is a correction or an enhancement.

Copsright € 1999 John Wiley & Sons. Ltd. J. Softwe. Maine: Res. Pract. 11, 365-389 (1999)

116




ONTOLOGY OF SOFTWARE MAINTENANCE

Characteristics of maintenance activities that affect the productivity and efficiency of maintenance
activities include the size of the modification and the criticality of the modification. Large
enhancements. particularly large enhancements of large products. are likely to require effort from
several different maintenance engineers, and will thus incur coordination and communication
overheads. Smaller enhancements that can be performed within schedule by one maintenance
engineer are usually more productive. The criticality of an enhancement or correction impacts
the elapsed time it takes for the modification to be delivered to users, since the scheduling of the
modification will be determined mainly by its criticality.

To accomplish the different maintenance activities, maintenance engineers require different
degrees of product understanding and different types of development tools. A corrective activity may
require only the ability to locate faulty code and make localised changes. whereas an enhancement
activity may require a broad understanding of a large part of the product (Singer. 1998). In the first
case, a maintainer will require testing or simulation tools to recreate the problem and debugging
tools to step through suspect code. In the second case. a maintainer's tool requirements will
depend on the quality of the development documentation. and the availability of the development
environment. If the maintainer has poor documentation and little of the original development
environment, he/she may require re-engineering tools and/or code navigation and cross-referencing
tools.

The efficiency and quality of investigation activities depends on the maintenance engineer
knowing the current status of patches and planned modifications that apply to the part of the product
involved with the new problem report or change request. The availability of such information
depends on the effectiveness of the product configuration control and change control process. A
good configuration control process is necessary to identify the status of each product component.
including information such as the currently applied patches. A formal change control process might
slow down the rate at which the maintenance process responds to input stimuli. but may improve
the ability of the change control and maintenance processes to preserve the integrity of the product
- under maintenance and its constituent artefacts.

3.4. Software maintenance process

3.4.1. Two processes

Within a software maintenance department, there are two different maintenance processes:

e the maintenance process used by individual maintenance engineers to implement a specific
modification request. and

e the organisation level process that manages the stream of maintenance requests from
customers/clients. users and maintenance engineers.

We consider both types of process separately. In order to use terminology similar to that used
by de Almeida. de Menezes and da Rocha (1998). we refer to our definition of the first process
as the software maintenance procedure ontology (see Figure 4). de Almeida has no equivalent to
the second process in his ontology. We refer to the second process as the maintenance organisation
process (see Figure 5).
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Table 5. Maintenance procedure ontology definitions

Development The technology used when the product and its constituent artefacts were
technology originally constructed. for example. knowledge-based system technology.

conventional data processing technology. The original development
technology constrains the possible maintenance procedures.

Paradigm The philosophy adopted during the original construction of the maintained
product. for example, the object-oriented paradigm or procedural paradigm.
The original paradigm constrains the possible maintenance procedures.

Procedure The conduct followed to perform an activity. A procedure may be classified
as @ method. technique or script. A procedure may be adopted to perform a
specific activity from a set of possible procedures.

Method A systematic procedure defining steps and heuristics to permit the
accomplishment of one or more activities.

Script A guideline for constructing/amending a specific type of document.
Technique A procedure used to accomplish an activity that is less rigorously defined than
a method.

3.4.2.  Software maintenance procedure

The software maintenance procedure ontology shown in Figure 4 is used to modify one or more
artefacts in order to implement a required software modification. The concepts shown in Figure 4 are
defined in Table 5. The definitions have been adapted from de Almeida. de Menezes and da Rocha's
definitions.

Artefacts are not solely source and object code items. Theyv comprise documents, System
representations and plans. etc.. constructed throughout the software development process. and
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modified during maintenance. A variety of different scripts. methods and technigues are used to
constructand modify such artefacts. and they are usually available to support maintenance activities.

Maintenance activity performance will be affected by the choice of software development
technology and development paradigm. It will also be affected by the extent to which procedures
are automated. In general. development technologies such as the development language and the
development paradigm place constraints on maintenance activities. and skill requirements on
maintenance human resources. The ISO/IEC 12207 Standard defines an “activity” as a life cycle
phase and a “task’ as something done as part of an activity. Here we are using only the term
"activity . but an activity can be decomposed into smaller activities. therefore capturing the [SO/IEC
definitions. '

In addition, the chosen development technology may present a significant risk to product
maintainability. A software product cannot continue to be maintained if its development
environment is not available to its maintainers. For products with a long lifetime it is necessary
to ensure that technologies such as compilers. code generators and CASE tools will themselves be
supported throughout the estimated litetime of the product.

3.4.3.  Maintenance organisation processes

Figure 5 shows the maintenance organisation process. Table 6 briefly defines the concepts used
in the model.

A maintenance organisation must handle a stream of maintenance requests from users. customer
and maintainers. Thus. a major element of a maintenance organisation is event management
(Niessink and van Vliet. 1998). Another major element of a maintenance organisation is
configuration management. Configuration management is the process responsible for releasing new
system versions and system amendments to users. In addition. configuration control systems need
to protect the integrity of the product when it is being modified. In particular. they need to ensure
that maintenance engineers know the current repair status of the product and product components.
If the configuration control system is inadequate. maintenance activities will be less efticient and
there is a danger that product quality will be compromised.

In addition. there needs to be a management process for authorising or rejecting modification
activities after initial investigation of the trigger event. This is usually the responsibility of a change
control board. The authorisation process may also include a process of negotiation with the client
about contractual arrangements for implementing a required modification (e.g.. budgets/price and
time-scales). Only after a proposed modification activity is approved by the change control board
and any necessary contractual arrangements are agreed with the client (which. for applications like
operating systems or self-standing products. may be the marketing department). will the proposed
modification activity be scheduled. A change control board can be organised as a formal process
involving meetings between users and customers/clients and maintenance managers. or as a simple
working procedure. The level of formality can affect quality and efficiency. Formal change control
boards are likely to slow the maintenance process but are better able to protect the integrity of the
product being maintained.

The efficiency of maintenance management activities is affected by the use of support tools.
Most organisations have configuration control tools. There are also many tools to assist event
management. For example. many maintenance organisations use “help” desk tools. which allow

Copyright © 1999 John Wiley & Sons. Lid. J. Softw. Maint: Res. Pract. 11, 365-389 (1999

119




B. A KITCHENHAM ET AL.

Product
size
age
Product Upgrade maturit
— -
composition
application type
Modification Activity quality
deXvers
approvds %&!e{
Configuration Management
Change Control farmality supports
guality
recgives
é Maintenance organisation
i

Investigation Report

Maintenance Manzgement

prosuces has
defin
|

ven t - —
Event Management ! Maintenance Organisation Structure

i levels

recefves consiggins

Service Level Agreement
gerformance targets

Maintenance Event

Figure 5. The maintenance organisation process ontology

events to be logged into an organisation and their progress tracked though the various maintenance
tasks needed to resolve the event. Another type of tool that supports the interface between the user
population and a maintenance organisation is a ‘known error log’. which identifies all currently
known errors and their workarounds or fixes.

The volume and type of maintenance requests affect the performance of the maintenance
organisation. For example. if there are a large number of defects reported, there may be insufficient
resources to undertake perfective or preventive modifications.

Service level agreements define the maintenance organisation’s performance targets. Differences
in achieved performance level may. therefore. be due to different performance targets. Maintenance
organisations must be engineered to meet their service level agreements. This is often done by
separating various support activities into well-defined roles that can be performed by staff with
specialised skills. For example. many maintenance organisations use the concept of support levels

1o separate staff. whose main concern is to support the user population and those concerned with
correcting or enhancing software.

At its simplest there may just be two support levels:

e Level I—this level provides the personnel who staff the help desk.
e Level 2—this level provides the personnel who make changes to software.
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Table 6. Maintenance organisation process ontology definitions

Service level agreement An agreement between the providers of a maintenance service and the
: customers of a maintenance service that specifies the performance targets
for the maintenance service.

Maintenance management  The process used to manage the maintenance service (as opposed
to the procedure used to manage individual maintenance requests).
The  organisation process is established and maintained by senior
maintenance managers. It is responsible for defining the structure of
the maintenance organisation such that it can fulfill its service level
agreement. Maintenance management has three main concerns other than
the normal concerns of quality assurance and project management: event
management. configuration control. change control.

Event management Event management is the process responsible for handling the stream of
events received by the maintenance organisation.

Change control Change control is the process responsible for evaluating the results of
maintenance event investigations and deciding whether or not 1o approve
a product modification.

Configuration Configuration management is responsible for maintaining the integrity

managemani of the product in terms of its version and modification status. It is also
responsible for the production of product upgrades.

Maintenance organisation  The roles undertaken by maintenance human resources in a mzintenance

structure organisation in order to perform the required administrative procedures.

Maintenance event A problem report. or change request originating from a customar or user
of the maintained product or a member of the maintenance organisation.

Investigation report The outcome of investigating the cause and implications of a maintenance
event.

However. at least three support levels is the more common situation:

o Level I—the help desk staft are non-technical. and are responsible for logging problems and
identifying the technical support person most likely to be able to assist a user.

o Level 2—the technical support personnel know how to communicate with users and
understand their problems, and they can advise on workarounds and quick fixes.

o Level 3—the maintenance engineers are authorised to make changes to the product.

The separation of maintenance services across different service levels makes it clear that not all
maintenance work results in product modification. Users may simply require advice about how to
use the product or how to circumvent a known problem with the product. The number of levels
and the specific roles they support affect the performance of the maintenance service. For example,
if there are too many levels there may be an unacceptable delay in responding to certain types of
maintenance request.

The other main role for a maintenance organisation is the planning and scheduling of maintenance
releases. This involves identifying the content of difference releases and a release cyvcle that is
appropriate to customer requirements. Factors such as the interval between scheduled maintenance
releases and the extent of change permitted to a product can have a significant impact on the quality
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of the maintained product (Lehman. Perry and Ramil. 1998). The procedures for releasing object

code fixes (for example. fix on fail. or periodic collated updates) can also affect product quality
(Mellor. 1983).

3.5. Peopleware

3.5.1. Two groups

Software production and maintenance are human intensive activities. Furthermore, they involve
people working together in teams, which are in turn part of larger organisations. Thus, no complete
description of factors affecting maintenance can ignore the human and social elements. There are
two types of staff involved in a maintenance process: the staft in the maintenance organisation, and
the staft in the customer/client organisation. Figure 6 shows our initial model of these factors. The
definition of peopleware concepts is given in Table 7.

3.5.2. Maintenance organisation staff

3.5.2.1. Staff attitudes. Staff attitudes and motivation are generally agreed to impact on the quality
of any activity. In the area of software maintenance. problems with motivation are expected because
software maintenance is often perceived to be of less importance and less well-rewarded than
development.
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Table 7. Peopleware ontology definitions

Client organisation ~ The organisation or organisations that use the maintained product and
have a defined relationship with the maintenance organisation.

Maintenance The organisation that maintains the product or products.
organisation
Human resource Employees of the maintenance or client organisation. Maintenance

organisation swft can be classified as managers or engineers. (For
simplicity we have omitted specialised QA staff who may be considered
a special class of engineer.) Employees of the client organisation can
be classified as users or customers. Managers in the maintenance
organisation negotiate with customers to determine service level
agreements and vosts and scheduling of requirement enhancements.

Management often compounds attitude problems by:

e making maintenance work equivalent to a punishment, and
e assigning novices to maintenance work.

This factor seems difficult to characterise. but is likely to have a major impact on the productivity
and quality of maintenance activities and the extent to which the maintenance staff is receptive to
process change.

3.5.2.2. Siaff responsibilities. One area that seems to have a major impact on the entire
maintenance culture of an organisation is whether or not there is a strict separation between staff
responsible for software development and those responsible for software maintenance.

At one extreme, there is no real separation between development and maintenance. This seems
to be associated with a particular type of product. i.e.. a product undergoing continual evolution
that is released periodically to clients and users. The software developers incorporate corrective,
perfective and preventive maintenance tasks into a process aimed at a continuing stream of planned
enhancements. In such an environment there may be no practical difference between the tools and
procedures used for "development’ and those used for ‘maintenance’. Furthermore. the personnel
themselves do not make any significant distinction between development and maintenance. which
reduces motivation problems.

At the other extreme, there are maintenance organisations that are completely separate from
development departments. and indeed may not work for the same company that developed the code
they maintain. In such an environment. maintenance programmers may need specially designed
tools to support their maintenance tasks.

Another issue is whether staff are responsible for the maintenance of a single product or group
of products (i.e., a product portfolio). It is usual for an evolutionary style of development to be
organised around a single product or product family. whereas a separate maintenance group usually
looks after a portfolio of different products.

These are issues that should concern maintenance managers when service level agreements are
defined. or when they are initially bidding for a maintenance contract.

Copyright € 1999 John Wiley & Sonx. Ltd. J. Sofmw. Mainz: Res. Pract. 11, 363-339 11999)

123




B. A KITCHENHAM ET AL.

3.5.2.3. Staff Skills. In general, the more skilled the maintenance staff. the better the productivity
and quality of maintenance activities. Different activities require different skills. so these factors
need to be controlled or specified during empirical studies of maintenance activities.

3.5.3. Customer and user staff

Customer and user issues that affect maintenance are:

e The size of the user population. which affects the amount of work required to support a
particular application.

‘ o The variability of the user population, which affects the scope of maintenance tasks. The more
‘ varied the user population, the more varied the problems they will encounter and refer to the
| maintenance staff.

‘ e Whether or not the client and maintenance organisation are part of the same company.
| Relationships between client and maintenance group may be less co-operative if the groups
| are from different companies.

o The extent to which the customer/client and users have common goals. Customers/clients
fund maintenance activities. If they do not understand the requirements of the real users, they
may impose inappropriate service level agreements. to the detriment of the product users who
will in turn become less satisfied with the maintenance organisation.

4. TWO MAINTENANCE SCENARIOS

4.1. Organisation distinction

Figure 7 shows the full maintenance ontology. In this section, we use this ontology to specify two
different maintenance scenarios. Statf responsibility seems to be one of the most important factors
in the above ontology. Our discussion at the WESS workshop continually returned to the issue of
whether or not the maintainers and software developers were the same people.

Therefore. in this section, we define two maintenance scenarios based on this distinction:

e Evolutionary development, and
¢ Independent maintenance organisation.

We show how the factors identified in the ontology differ in the two scenarios. In addition, we

consider for each the related industrial concerns.

4.2. Evolutionary development

Table 8 specifies the evolutionary development scenario. In this maintenance scenario,
practitioners are often concerned with optimising the evolutionary process. Particular concerns
include:

e optimisation (and/or minimisation) of inter-release intervals,
e prediction of release quality/reliability,
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Table 8. Evolutionary development scenario

Staff responsibilities

Product size

Development technology
Application domain

Product age

Product maturity

Maintenance management
process

Maintenance group
organisation

Staff attitudes

Types of maintenance

Customer and user types
Document quality

Maintenance engineers are responsible both for producing new product
upgrades and for correcting problems in past releases. Staff are
responsible for the evolution of a single product or product family.
Usually large. Examples: Space Shuttle. Microsoft Word, ICL VME
Operating System. Note. however, large products often encourage
small companies to produce small add-on products. These small
products truck the evolution of larger products. For example PKZIP
tools have evolved in line with Microsoft products from DOS to
Windows 3.1 to Windows 98.

The maintsnance and development technologies are identical.
Maintenance activities do not require additional staff skills or tools.

Application domain knowledge is required both for maintenance and
development.

As the product ages. the original software developers will move to
other jobs so some expertise is lost. However. there is also some
continuity resulting from the overlap between older staff leaving and
new staff joining the group.

The impact of maturity on an evolving product depends on the client
and user population. For shrink-wrapped products. there is a danger
that muintenance requests arising from a lurge user population will
interfere with enhancement activities. For example. defect reports
arising from release #n will be received during the development of
release n = 1. This can be even more complicated if different clients
do not upgrude in the sume time scale. so some client will be reporting
defects with release n — 2 while others are reporting problems with
release n — 1. If one product release is of particularly poor quality.
it may generate enough defect reports to prevent software developers
working on the next planned release. For custom products, such as
the Spuace Shuttle. releases are co-ordinated with the specific client
activities so there is less of a problem.

The management will need to provide a means to administer the
stream of defect reports from users. Release schedules are based
on prioritising customer requirements. Enhancements are funded
either by clients (analogous to development projects). or licensing
agreements or product sales. Licensing agreements or product sales
usually covers maintenance costs.

Support levels are often used to separate software developers from
support staff who interface with users.

Staff regard themszlves as software engineers rather than developers
and maintainers so there are less likely to be problems motivating staff.
All enhancement activities are referred to as evolutionary develop-
ment.

See product maturits.

In principle. the original software documentation would continue to be
updated as purt of the evolutionary release cycle. However. in practice
this would depend on the organisational culture and management
practices.
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Table 9. Independent Maintenance Group Scenario

Staff responsibilities

Product size
Development technology

Application domain

Product age

Product maturity

Maintenance management
process

Maintenance Group
Organisation

Staff attitudes

Types of maintenance
Customer and user types

Document quality

Maintenance engineers are responsible for producing product
upgrades that may include changes due to enhancements and
corrections of maintenance tasks. They will usually not have
been involved in original product development. Staff is usually
responsible for a portfolio of products.

Individual elements in a portfolio will be of different sizes.

Usually different products in different portfolios will have
been produced using different technologies. The maintenance
organisation will often need to support many different technologies
although the technologies. required by an individual maintainer
will usually be restricted.

If the portfolio of products is very diverse. it will be difficult
1o ensure that all maintenance staff have appropriate domain
knowledge.

Different products will have different ages. This makes the
maintenance of portfolios complex and planning and costing
maintenance activities difficult.

Different products will have different levels of maturity.

The management will need to provide a means to administer the
stream of defect reports from users. They need fairly complex
estimating and risk management procedures to cope with the
complexity inherent in administering portfolios. This will be less
formal if the client and maintenance group work for the same
company. Relationships with customers are usually mandated
by a service agreement, although adaptive maintenance may be
managed like a development project.

Support levels are often used to separate software developers from
support staff who interface with users.

Motivation is likely to be particularly important in maintenance
groups.

All the standard types of maintenance are performed.

There seem to be two different scenarios: One client—many users.
e.g. in-house support groups. Many Clients—many users, e.g. a
third party maintenance shop. Note that in some cases the number
of items in the portfolio is important. Some maintenance shops
support one large custom product in each client portfolio. e.g.
Department of Defense in the U.S.A.

This is a critical issue for third party maintenance shops since
they seldom have any access to software developers. For in-house
support groups it may be less of a problem because thev may have
access to the original developers.
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e effort estimation for individual enhancement projects. and
e planning functional contents of releases to minimise the risk of destabilising the product while
achieving customer/client required functionality.

Another important concern is the impact of new development paradigms on system evolution,
e.g., RAD products, COTS-based products and object-oriented products.

4.3. Independent maintenance group

Table 9 specifies the independent maintenance group scenario. In this scenario. industry concerns
differ according to whether or not the maintenance ‘shop’ is in-house or a third-party organisation. In
particular, third-party organisations have concerns about bidding for maintenance contracts (in terms
of estimation processes and accuracy and risks). that are less important for in-house maintenance
groups (unless they are candidates for outsourcing). Furthermore. outsourcing organisations—
particularly those that takeover in-house organisations—have major management concerns about
the issues of achieving 2 common organisational culture and changing the working methods of
organisations they absorb (Tittle, 1998; Ketler and Willems, 1999).

All types of maintenance group have concerns about maintenance task estimating and planning
and improving efficiency of maintenance activities. An important issue for such organisations
is the need for re-engineering methods and tools to address the problem of lack of adequate
specification/design documentation in older products.

5. CONCLUSIONS

This paper has presented an ontology of software maintenance aimed at assisting researchers to
report sufficient contextual detail for other researchers and practitioners to understand the results
of empirical studies. We developed the ontology from our personal experiences of the maintenance
process and have discussed two different maintenance scenarios in terms of the ontology. Figure 7
summarises the ontology, modelled in UML.

One of the problems with the model is that competency questions provide a criterion for inclusion
of a factor in the model, but they do not provide completion criteria. nor do they provide any concept
of relative importance. Thus, the elements identified in the model are things that a researcher needs
to report when describing empirical studies, but there may be other factors we have not included.
We must emphasise that, even using this ontology as a guide, it is still the responsibility of the
individual researcher to attempt to identify any special conditions that apply to his/her results.

Formally, the ontology presented in this paper is not complete. We have not attempted to formalise

the ontology using predicate logic. nor have we fully evaluated it. Furthermore. since we are not
attempting to integrate our ontology into a knowledge-based system. we do not believe such a
formalisation is necessary. In its current form, we believe the ontology provides useful insights
into the type of information researchers should report if we are to understand fully the results of
empirical studies of maintenance. Only if the software maintenance community were considering
a large-scale database to register empirical research results. would a formalised, fully-evaluated
ontology be necessary.

Copyright © 1999 John Wiley & Sons. Ltd. J. Softnw. Maint: Res. Pract. 11.365-389 (1999)
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Abstract

This paper addresses the problem of how to produce reliable software that is also flexible and cost
effective for the DoD distributed software domain. DoD software systems fall into two
categories: information systems and war fighter systems. Both types of systems can be distributed,
heterogeneous and network-based, consisting of a set of components running on different
platforms and working together via multiple communication links and protocols. We propose to
tackle the problem using prototyping and a “wrapper and glue” technology for interoperability
and integration. This paper describes a distributed development environment, CAPS (Computer-
Aided Prototyping System), to support rapid prototyping and automatic generation of wrapper
and glue software based on designer specifications. The CAPS system uses a fifth-generation
prototyping language to model the communication structure, timing constraints, I/O control, and
data buffering that comprise the requirements for an embedded software system. The language
supports the specification of hard real-time systems with reusable components from domain
specific component libraries. CAPS has been used successfully as a research tool in prototyping
large war-fighter control systems (e.g. the command-and-control station, cruise missile flight
control system, missile defense systems) and demonstrated its capability to support the
development of large complex embedded software.

1. Introduction

DoD software systems are currently categorized into Management Information Systems (MIS)
and War Fighter/Embedded Real-time Systems. Both types of systems can be distributed,
heterogeneous and network-based, consisting of a set of subsystems, running on different
platforms that work together via multiple communication links and protocols. This paper
addresses the problem of how to produce reliable software that is also flexible and cost effective
for the DoD distributed software system domain, as depicted in the shaded area in Figure 1.

" This research was supported in part by the U. S. Army Research Office under contract/grant number
35037-MA and 40473-MA.
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vk MIS COTS/GOTS Components/Subsystems
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network under strict timing constraints. For example, future
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Figure 1. DoD Computer-based systems

Many DoD information systems are COTS/GOTS based (commercial/government off-the-shelf,
including “legacy systems™). While using individual COTS/GOTS components saves DoD money,
it shifts problems from software development to software integration and interoperability. It is a
common belief that interoperability problems are caused by incompatible interface and data
formats, and can be fixed “easily” using interface converters and data formatters. However, the
real challenges in fixing interoperability problems are incompatible data interpretations,
inconsistent assumptions, requirement extensions triggered by global integration issues, and timely
data communication between components. Many DoD information systems, especially C4ISR
systems, operate under tight timing constraints. Builders of COTS/GOTS based systems have no
control over the network on which components communicate. They have to work with available
infrastructure and need tools and methods to assist them in making correct design decisions to
integrate COTS/GOTS components into a distributed network based system. Similar integration
and interoperability problems are common in the commercial sector, and real-time issues are a
growing concern. For example, just-in-time manufacturing, on-demand accounting, and factory
automation all involve timing requirements. Although software engineers have more control over
interfaces and data compatibility between individual components of war fighter systems, they
encounter similar data communication problems when they need to connect these components via
heterogeneous networks.

We can tackle the problem using prototyping and a “wrapper and glue” technology for
interoperability and integration. Our approach is based on a distributed architecture where
components collaborate via message passing over heterogeneous networks. It uses a generic
interface that allows system designers to specify communication and operating requirements
between components as parameters, based on properties of COTS/GOTS components. A separate
parameterized model of network characteristics constrains the concrete “glue” software generated
for each node. The model enables partial specification of requirements by the system designers,
and allows them to explore design alternatives and determine missing parameters via rapid

prototyping.
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2. The Wrapper and Glue Approach

The cornerstone of our approach is automatic generation of wrapper and glue software based on
designer specifications. This software bridges interoperability gaps between individual
COTS/GOTS components. Wrapper software provides a common message-passing interface for
components that frees developers from the error prone tasks of implementing interface and data
conversion for individual components. The glue software schedules time-constrained actions and
carries out the actual communication between components. (See Figure 2)

A Missile Guidance
System running on a
QNX RTOS

A C2 System running on an
NT platform

i C based
JAVA based navigation
GUI software

Ada based Network service
message

processor

A Theater Defense
Simulation System
running on a UNIX OS

Network service

CH++
Database
system

BN wrapper === jifferent kinds of AN
=7 glue ereeesens, COMMuUNication ~
links N Network service

Figure 2. The wrapper and glue software

Our glue-and-wrapper approach uses rapid prototyping and automated software synthesis to
improve reliability. It differs from proxy and broker patterns in the object-oriented design
literature [4] in that it provides a formal model to support hardware/software co-design. Existing
pattern approaches focus on low level data transfer issues. Our approach allows system designers
to concentrate on the difficult interoperability problems and issues, while freeing them from
implementation details. Prototyping with engineering decision support can help identify and
resolve requirements conflicts and semantic Incompatibilities.

Glue code works on two levels. It controls the orderly execution of components within a
subsystem, and ensures the timely delivery of information between components across a network.
Automated generation of glue code depends on automated local and distributed scheduling of
actions on heterogeneous computing platforms. Identifying timing constraint conflicts and
assessing constraint feasibility are critical in designing and constructing real-time software quickly.
Checking whether a set of timing and task precedence constraints can be met on a chosen

hardware configuration is known to be a difficult problem. Computer aid is needed in tackling
such problem.
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3. The Computer Aided Prototyping System (CAPS)

The value of computer aided prototyping in software development is clearly recognized. It is a
very effective way to gain understanding of the requirements, reduce the complexity of the
problem and provide an early validation of the system design. Bernstein estimated that for every
dollar invested in prototyping, one can expect a $1.40 return within the life cycle of the system
development [1]. To be effective, prototypes must be constructed and modified rapidly,
accurately, and cheaply [8]. Computer aid for rapidly and inexpensively constructing and
modifying prototypes makes it feasible [10]. The Computer-Aided Prototyping System (CAPS), a
research tool developed at the Naval Postgraduate School, is an integrated set of software tools
that generate source programs directly from high level requirements specifications [7] (Figure 3).
It provides the following kinds of support to the prototype designer:

(1) timing feasibility checking via the scheduler,

(2) consistency checking and automated assistance for project planning, configuration
management, scheduling, designer task assignment, and project completion date
estimation via the Evolution Control System,

(3) computer-aided design completion via the editors,

(4) computer-aided software reuse via the software base, and

(5) automatic generation of wrapper and glue code.

The efficacy of CAPS has been demonstrated in many research projects at the Naval Postgraduate
School and other facilities.

Project Control

3roddng wonnIaxX g

Software Base

~_

Figure 3. The CAPS Rapid Prototyping Environment

135




3.1 Overview of the Caps Method

There are four major stages in the CAPS rapid prototyping process: software system design,
construction, execution, and requirements evaluation/modification (Figure 4).

Generate initial
requirements

L4 Reusable DBMS
Construct / modify | _ Software - Softw Do
] > ; - oftware esign
rototype desi

L ty;l £ Database | Database
Modify E Generate target < E
requirements E source code o
A ; Execution :'
: Y Support
; Demonstrate System l:
! Prototype '

Figure 4. Iterative Prototyping Process in CAPS

The nitial prototype design starts with an analysis of the problem and a decision about which
parts of the proposed system are to be prototyped. Requirements for the prototype are then
generated, either informally (e.g. English) or in some forma] notation. These requirements may be
refined by asking users to verify their completeness and correctness.

After some requirements analysis, the designer uses the CAPS PSDL editor to draw dataflow
diagrams annotated with nonprocedural control constraints as part of the specification of a
hierarchically structured prototype, resulting in a preliminary, top-level design free from
programming level details. The user may continue to decompose any software module until its
components can be realized via reusable components drawn from the software base or new atomic
components.

This prototype is then translated into the target programming language for execution and
evaluation. Debugging and modification utilize a design database that assists the designers in
managing the design history and coordinating change, as well as other tools shown in Figure 3.

3.2 CAPS as a Requirements Engineering Tool

The requirements for a software system are expressed at different levels of abstraction and with
different degrees of formality. The highest level requirements are usually informal and imprecise,
but they are understood best by the customers. The lower levels are more technical, precise, and
better suited for the needs of the system analysts and designers, but they are further removed from
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the user's experiences and less well understood by the customers. Because of the differences in the
kinds of descriptions needed by the customers and developers, it is not likely that any single
representation for requirements can be the “best” one for supporting the entire software
development process. CAPS provides the necessary means to bridge the communication gap
between the customers and developers. The CAPS tools are based on the Prototype System
Description Language (PSDL), which is designed specifically for specifying hard real-time
systems [5, 6]. It has a rich set of timing specification features and offers a common baseline from
which users and software engineers describe requirements. The PSDL descriptions of the
prototype produced by the PSDL editor are very formal, precise and unambiguous, meeting the
needs of the system analysts and designers. The demonstrated behavior of the executable
prototype, on the other hand, provides concrete information for the customer to assess the
validity of the high level requirements and to refine them if necessary.

3.3 CAPS as a System Testing and Integration Tool

Unlike throw-away prototypes, the process supported by CAPS provides requirements and
designs in a form that can be used in construction of the operational system. The prototype
provides an executable representation of system requirements that can be used for comparison
during system testing. The existence of a flexible prototype can significantly ease system testing
and integration. When final implementations of subsystems are delivered, integration and testing
can begin before all of the subsystems are complete by combining the final versions of the
completed subsystems with prototype versions of the parts that are still being developed.

3.4 CAPS as an Acquisition Tool

Decisions about awarding contracts for building hard real-time systems are risky because there is
little objective basis for determining whether a proposed contract will benefit the sponsor at the
time when those decisions must be made. It is also very difficult to determine whether a delivered
system meets its requirements. CAPS, besides being a useful tool to the hard real-time system
developers, is also very useful to the customers. Acquisition managers can use CAPS to ensure
that acquisition efforts stay on track and that contractors deliver what they promise. CAPS
enables validation of requirements via prototyping demonstration, greatly reducing the risk of
contracting for real-time systems.

3.5 A Platform Independent User Interface

The current CAPS system provides two interfaces for users to invoke different CAPS tools and to
enter the prototype specification. The main interface (Figure 5) was developed using the TAE+
Workbench [11]. The Ada source code generated automatically from the graphic layout uses
libraries that only work on SUNOS 4.1.X operating systems. The PSDL editor (Figure 6), which
allows users to specify the prototype via augmented dataflow diagram, was implemented in C++
and can only be executed under SUNOS 4.1.X environments. A portable implementation of the
CAPS main interface and the PSDL editor was needed to allow users to use CAPS to build PSDL
prototypes on different platforms. We choose to overcome these limitations by reimplementing

137




the main interface (Figure 7) and the PSDL editor (Figure 8) using the Java programming
language [2].
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Figure 5. Main Interface of CAPS Release 2.0

e N

Figure 6. PSDL Editor of CAPS Release 2.0 Figure 8. PSDL Editor of the new CAPS

The new graphical user interface, called the Heterogeneous Systems Integrator (HSI), is similar to
the previous CAPS. Users of previous CAPS versions will easily adapt to the new interface. There
are some new features in this implementation, which do not affect the functionality of the
program, but provide a friendlier interface and easier use. The major improvement is the addition
of the tree panel on the left side of the editor. The tree panel provides a better view of the overall
prototype structure since all of the PSDL components can be seen in a hierarchy. The user can
navigate through the prototype by clicking on the names of the components on the tree panel.
Thus, it is possible to jump to any level in the hierarchy, which was not possible earlier.

4. A Simple Example: Prototyping a C3I Workstation

To create a first version of a new prototype, users can select “New” from the “Prototype” pull-
down menu of the CAPS main interface (Figure 9). The user will then be asked to provide the
name of the new prototype (say “c3i_system”) and the CAPS PSDL editor will be automatically
invoked with a single initial root operator (with a name same as that of the prototype).
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Figure 9. Creating a new prototype called C3]_System

CAPS allows the user to specify the requirements of prototypes as augmented dataflow graphs.
Using the drawing tools provided by the PSDL editor, the user can create the top-level dataflow
diagram of the c3i_system prototype as shown in Figure 10, where the ¢3i_system prototype is
modeled by nine modules, communicating with each other via data streams. To model the
dynamic behavior of these modules, the dataflow diagram is augmented with control and timing
constraints. For example, the user may want to specify that the weapons_interface module has a
maximum response time of 3 seconds to handle the event triggered by the arrival of new data in
the weapon_status_data stream, and it only writes output to the weapon_emrep stream if the
status of the weapon_status_data is damage, service_required, or out_of ammunition. CAPS
allow the user to specify these timing and control constraints using the pop-up operator property
menu (Figure 11), resulting in a top-level PSDL program shown in F igure 12.

To complete the specification of the c3i_system prototype, the user must specify how each
module will be implemented by choosing the implementation language for the module via the
operator property menu. The implementation of a module can be in either the target programming
language or PSDL. A module with an implementation in the target programming language is
called an atomic operator. A module that is decomposed into a PSDL implementation is called a
composite operator. Module decomposition can be done by selecting the corresponding operator
in the tree-panel on the left side of the PSDL editor.

CAPS supports an incremental prototyping process. The user may choose to implement all nine
modules as atomic operators (using dummy components) in the first version, so as to check out
the global effects of the timing and control constraints. Then, he/she may choose to decompose
the comms_interface module into more detailed subsystems and implement the sub-modules with
reusable components, while leaving the others as atomic operators in the second version of the
prototype, and so on.
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OPERATOR c3i_system
SPECIFICATION
DESCRIPTION
{This module implements a simplified version of
a generic C3I workstation.}

END
IMPLEMENTATION
GRAPH
0 ms 0 ns
input_link_ message
tomms_1inkh conms_inkerface wveapons_interface
) weappn status data
comms_add_trac tch_ehissidn_coptrol
terminate trans
RPN - tcl_netwo setup
initiate_trens - ~
tcd g¥chive setup
comns_emyil d_transmit_command ¢ 200 ps
track fdatabase_kanager user jinterface weapons_interface
ut tracks egpons_statrep
; wveapons_enre
tdd filter eep _€nrep .
- Ciys {stqtus
position_data ,_Sratys
sensoredd_track tug_stetus
nk48 "ssatus
sensor_data 0 ns
0 ms =
osition_data
; sensors
navigation_sygtem sensors_interface

DATA STREAM
-- Type declarations for the data streams in the graph go here.
CONTROL CONTRAINTS
OPERATOR comms_links OPERATOR weapons_interface
PERIOD 30000 MS TRIGGERED BY SOME
weapon_status_data

OPERATOR navigation_system MINIMUM CALLING PERIOD 2000 MS

PERICD 30000 MS MAXIMUM RESPONSE TIME 3000 MS
OUTPUT
OPERATOR sensors weapons_emrep
PERIOD 30000 MS IF weapon_status_data.status
damaged
OPERATOR weapons_systems OR weapon_status_data.status
PERIOD 30000 MS service_required

OR weapon_status_data.status
out_of ammunition
END

Figure 12. Top-level Specification of the c3i_system
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To facilitate the testing of the prototypes, CAPS provides the user with an execution support
system that consists of a translator, a scheduler and a compiler. Once the user finishes specifying
the prototype, he/she can invoke the translator and the scheduler from the CAPS main interface
to analyze the timing constraints for feasibility and to generate a supervisor module for each
subsystem of the prototype in the target programming language. Each supervisor module
consists of a set of driver procedures that realize all the control constraints, a high priority task
(the static schedule) that executes the time-critical operators in a timely fashion, and a low
priority dynamic schedule task that executes the non-time-critical operators when there is time
available. The supervisor module also contains information that enables the compiler to
incorporate all the software components required to implement the atomic operators and
generate the binary code automatically. The translator/scheduler also generates the glue code
needed for timely delivery of information between subsystems across the target network.

For prototypes which require sophisticated graphic user interfaces, the CAPS main interface
provides an interface editor to interactively sculpt the interface. In the ¢3i_system prototype, we
choose to decompose the comms_interface, the track_database_manager and the user_interface
modules into subsystems, resulting in hierarchical design consisting of 8 composite operators and
twenty-six atomic operators. The user interface of the prototype has a total of 14 panels, four of
which are shown in Figure 13. The corresponding Ada program has a total of 10.5K lines of
source code. Among the 10.5K lines of code, 3.5K lines comes from supervisor module that was
generated automatically by the translator/scheduler and 1.7K lines that were automatically
generated by the interface editor [9].

5. Conclusion

CAPS has been used successfully as a research tool in prototyping large war-fighter control
systems (e.g. the command-and-control station, cruise missile flight control system, missile
defense systems) and demonstrated its capability to support the development of large complex
embedded software. Specific payoffs include:

(1) Formulate/validate requirements via prototype demonstration and user feedback
(2) Assess feasibility of real-time system designs

(3) Enable early testing and integration of completed subsystems

(4) Support evolutionary system development, integration and testing

(5) Reduce maintenance costs through systematic code generation

(6) Produce high quality, reliable and flexible software

(7) Avoid schedule overruns

In order to evaluate the benefits derived from the practice of computer-aided prototyping within
the software acquisition process, we conducted a case study in which we compared the cost (in
dollar amounts) required to perform requirements analysis and feasibility study for the c3i system
using the 2167A process, in which the software is coded manually, and the rapid prototyping
process, where part of the code is automatically generated via CAPS [3]. We found that, even
under very conservative assumptions, using the CAPS method resulted in a cost reduction of
$56,300, a 27% cost saving. Taking the results of this comparison, then projecting to a mission
control software system, the command and control segment (CCS), we estimated that there would
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be a cost saving of 12 million dollars. Applying this concept to an engineering change to a typical
component of the CCS software showed a further cost savings of $25,000.
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Figure 13. User Interface of the ¢3i_system
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A Risk Assessment Model for Evolutionary Software Projects’
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Abstract

Current early risk assessment techniques rely on subjective human judgments and
unrealistic assumptions such as fixed requirements and work breakdown structures. This is a
weak approach because different people could arrive at different conclusions from the same
scenario even for projects with a stable and well-defined scope, and such projects are rare. This
paper introduces a formal model to assess the risk and the duration of software projects
automatically, based on objective indicators that can be measured early in the process. The
model has been designed to account for significant characteristics of evolutionary software
processes, such as requirement complexity, requirement volatility and organizational efficiency.
The formal model based on these three indicators estimates the duration and risk of evolutionary
software processes. The approach supports (a) automation of risk assessment and, (b) early
estimation methods for evolutionary software processes.

1. Introduction

Software applications have grown in size and complexity covering many human activities of
importance to society. The report of the President s Information Advisory Committee calls
software the new physical infrastructure of the information age . Unfortunately, the ability to
build software has not increased proportionately to demand [Hall, 1997. PP xv], and shortfalls in
this regard are a growing concern. According to the Standish group, in 1995 84% of software
projects finished over time or budget, and $80 billion - $100 billion is spent annually on
cancelled projects in the US. Developing software is still a high-risk activity.

There have been many approaches to improving this situation, mostly focused on increasing
productivity via improvements in technology or management. Although better productivity is
certainly welcome, closer examination shows that these efforts address only half of the problem.
A project gets over time or over budget if actual performance does not match estimates. Current
estimation techniques are far from reliable, and tend to systematically produce overly optimistic
estimates. More accurate early estimates could help reduce wasted resources associated with
overruns and cancelled projects in two ways: if costs are known to be too high at the outset, the
scope of the project could be reduced to enable completion within time and budget, or it could
be cancelled before it starts, and instead the resources could be used to successfully complete
other feasible projects. '

This paper therefore focuses on improved risk assessment for software projects. We address
project risks related to schedule and budget, and focus mostly on completion time of the project.
Current risk assessment standards are weak because they rely on subjective human expertise,
assume frozen requirements, or depend on metrics difficult to measure until it is too late. This
paper describes a formal risk assessment model based on metrics and sensitive to requirements
volatility. Further details can be found in [Nogueira 2000]. The model is specially suited for
evolutionary prototyping and incremental software development.

Section 2 defines the problem we are addressing. Section 3 analyzes relevant previous work.
Section 4 presents and evaluates our project risk model. Section 5 outlines how systematic risk
assessment fits into iterative prototyping. Section 6 concludes.

! This research was supported in part by the U. S. Army Research Office under contract/grant number
35037-MA and 40473-MA, and in part by DARPA under contract #99-F759.
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2. The Problem

As the range and complexity of computer applications have grown, the cost of software
development has become the major expense of computer-based systems [Boehm 1981],
[Karolak 1996]. Research shows that in private industry as well as in government environments,
schedule and cost overruns are tragically common [Luqi 1989, Jones 1994, Boehm 1981].
Despite improvements in tools and methodologies, there is little evidence of success in
improving the process of moving from the concept to the product, and little progress has been
made in managing software development projects [Hall, 1997]. Research shows that 45 percent
of all the causes for delayed software deliveries are related to organizational issues
[vanGenuchten 1991]. A study published by the Standish Group reveals that the number of
software projects that fail has dropped from 40% in 1997 to 26% in 1999. However, the
percentage of projects with cost and schedule overruns rose from 33% in 1997 to 46% in 1999
[Reel 1999].

Despite the recent improvements introduced in software processes and automated tools, risk
assessment for software projects remains an unstructured problem dependent on human
expertise [Boehm 1988, Hall 1997]. The acquisition and development communities, both
governmental and industrial, lack systematic ways of identifying, communicating and resolving
technical uncertainty [SEI 1996].

This paper explores ways to transform risk assessment into a structured problem with
systematic solutions. Constructing a model to assess risk based on objectively measurable
parameters that can be automatically collected and analyzed is necessary. Solving the risk
assessment problem with indicators measured in the carly phases would constitute a great
benefit to software engineering. In these early phases, changes can be made with the least
impact on the budget and schedule. The requirements phase is the crucial stage to assess risk
because: a) it involves a huge amount of human interaction and communication that can be
misunderstood and can be a source of errors; b) errors introduced at this phase are very
expensive to correct if they are discovered late; c) the existence of software generation tools can
diminish the errors in the development process if the requirements are correct; and d)
requirements evolve introducing changes and maintenance along the whole life cycle.

Part of the problem is misinterpreting the importance of risk management. It is usually and
incorrectly viewed as an additional activity layered on the assigned work, or worse, as an
outside activity that is not part of the software process [Hall 1997, Karolak 1996]. One of the
goals of our research is to integrate a risk assessment model with previous research on CAPS? at
NPS [Harn 99]. This integration is required in order to capture metrics automatically in the
context of a modern evolutionary prototyping and software development process. This should
provide project managers with a more complete tool that can enable improved risk assessment
without interfering with the work of a project s software engineers.

A second source of problems in risk management is the lack of tools [Karolak 1996]. The
main reason for this lack of tools is that risk assessment 1s apparently an unstructured problem.
To systematize unstructured problems it is necessary to define structured processes. Structured
processes involve routine and repetitive problems for which a standard solution exists.
Unstructured processes require decision-making based on a three-phase method (intelligence,
design, choice) [Turban et al 1998]. An unstructured problem is one in which none of the three
phases is structured. Current approaches to risk management are highly sensitive to managers
perceptions and preferences, which are difficult to represent by an algorithm. Depending on the
decision-maker’s attitude towards risk, he or she can decide early with little information, or can
postpone the decision, gaining time to obtain more information, but losing some control.

A third source of risk management problems is the confusion created by the informal use of
terms. Often, the software engineering community (and most parts of the project management

% CAPS stands for Computer Aided Prototyping System [Lugi 1988].
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community [Wideman 1992]) uses the term "risk" casually. This term is often used to describe
different concepts. It is erroneously used as a synonym of "uncertainty” and "threat" [SEI 1996,
Hall 1997, Karolak, 1996]. Generally, software risk is viewed as a measure of the likelihood of
an unsatisfactory outcome and a loss affecting the software from different points of view:
project, process, and product [Hall 1997, SEI 1996]. However, this definition of risk is
misleading because it confounds the concepts of risk and uncertainty. In general, most parts of
decision-making in software processes are under uncertainty rather than under risk. Uncertainty
- is a situation in which the probability distribution for the possible outcomes is not known.

In this paper the term "risk" is reserved to indicate the probabilistic outcome of a succession
of states of nature, and the term "threat" is used to identify the dangers that can occur. We
define risk to be the product of the value of an outcome times its probability of occurrence. This
outcome could be either positive (gain) or negative (loss). This abstraction permits one to
address not only the classical risk management issue, but also to discover opportunities leading
to competitive advantage.

We address the issue of risk assessment by estimating the probability distribution for the

possible outcomes of a project, based on observed values of metrics that can be measured early-

in the process. The metrics were chosen based on a causal analysis to identify the most
important threats and a statistical analysis to choose the shape of the probability distribution and
relate its parameters to readily measurable metrics.

3. Related Work

There are three main groups of research related to risk:

® Assessing Software Risk by Measuring Reliability. This group follows a probabilistic
approach and has successfully assessed the reliability of the product [Lyu 1995,
Schneidewind 1975, Musa 1998]. However, this approach addresses the reliability of the
product, not the risk of failing to complete the project within budget and schedule
constraints. These approaches could be used to assess risks related to failures of software
projects, which are outside the scope of the current paper. A concern with these approaches
is that the resulting assessments arrive too late to economically correct possible faults,
because the software product is mostly complete and development resources are mostly
gone at the time when reliability of the product can be assessed by testing.

e Heuristic approaches: Other researchers assess the risk from the beginning, in parallel
with the development process. However, these approaches are less rigorous, typically
subjective and weakly structured. Basically these approaches use lists of practices and
checklists [SEI, 1996, Hall 1997, Charette 1997, Jones 1994] or scoring techniques [Karolak
1996]. Paradoxically, SEI defines software technical risk as a measure of the probability and
severity of adverse effects in developing software that does not meet its intended functions
and performance requirements [SEIL, 1996]. However, the term "probability" is misleading
in this case because the probability distribution is unknown.

e Macro Model Approaches: A third group of researchers uses well known estimation
models to assess how risky a project could be. The widely used methods COCOMO
[Boehm 1981], and SLIM [Putnam, 1980] both assume that the requirements will remain
unchanged, and require an estimation of the size of the final product as input for the models
[Londeix 1987]. This size cannot be actually measured until late in the project.

The standard tools used to control all types of projects, including PERT, CPM, and Gantt,
do not consider coordination and communication overhead. Such models represent sequential
interdependencies through explicit representation of precedence relationships between activities.
This simplified vision of a project cannot address the dynamics created by reciprocal
requirements of information in concurrent activities, exception management, and the impact of
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actor interactions. Since the missing factors increase time requirements, the estimates resulting
from these generic project estimation models are overly optimistic.

These issues are addressed by Vit Project [Levitt 1999, Thomsen et al. 1999]. Vit Project is
applicable to projects in which a) all activities in the project can be predefined; b) the
organization is static, and all activities are pre-assigned to actors in the static organization; c) the
exceptions to activities result in extra work volume for the predefined activities and are carried
out by the pre-assigned actors; and d) actors are assumed to have congruent goals. The model is
well suited for simulating organizations that deal with great amounts of information processing
and coordination. Such characteristics are extremely relevant in software processes [Boehm,
1981]. However, this approach requires a fixed work breakdown structure, and therefore does
not apply at the early stages when requirements are changing and the set of tasks comprising the
project are still uncertain.

By using informal risk assessment models, using estimation models based on optimistic
assumptions that require parameters difficult to provide until late, and using optimistic project
control tools, project managers condemn themselves to overrun schedules and cost.

4. The Proposed Project Risk Model

Our approach is based on metrics automatically collectable from the engineering database
from near the beginning of the development. The indicators used are Requirements Volatility
(RV), Complexity (CX), and Efficiency (EF).

Requirement Volatility (RV): RV is a measure of three characteristics of the requirements: a) the
Birth-Rate (BR), that is the percentage of new requirements incorporated in each cycle of the
evolution process; b) the Death-Rate (DR), that is the percentage of requirements dropped in
each cycle; and c) the Change-Rate (CR) defined as the percentage of requirements changed
from the previous version. A change in one requirement is modeled as a birth of a new
requirement and the death of another, so that CR is included in the measured values of BR and
DR. RV is calculated as follows: RV = BR + DR.

Complexity (CX): Complexity of the requirements is measured from a formal specification. A
requirements representation that supports computer-aided prototyping, such as PSDL [Lugi
1996], is useful in the context of evolutionary prototyping. We define a complexity metric
called Large Granularity Complexity (LGC) that is calculated as follows: LGC = O+D+T,
where for PSDL O is the number of atomic operators (functions or state machines), D is the
number of atomic data streams (data connections between operators), and T is the number of
abstract data types required for the system. Operators and data streams are the components of a
dataflow graph. This is a measure of the complexity of the prototype architecture, similar in
spirit to function points but more suitable for modeling embedded and real-time systems. The
measure can also be applied to other modeling notations that represent modules, data
connections, and abstract data types or classes. We found a strong correlation between the
complexity measured in LGC and the size of PSDL specifications (correlation coefficient R =
0.996). Most important, we also found a strong correlation (R = 0.898) between the complexity
measured in LGC and the size of the final product expressed in non-comment lines of Ada code,
including both the code automatically created by the generator and the code manually
introduced by the programmers.

Efficiency (EF): The efficiency of the organization is measured using a direct observation of the
use of time. EF is calculated as a ratio between the time dedicated to direct labor and the idle
time: EF = Direct Labor Time / Idle Time. We found that this easily measurable quantity was a
good discriminator between high team productivity and low team productivity in a set of
simulated software projects [Nogueira 2000].
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We validated and calibrated our model with a series of simulated software projects using
Vit Project. This tool was chosen because of the inclusion of communications and exceptions in
its project dynamics model, and because it has been extensively validated for many types of
engineering projects, including software engineering projects. The mput parameters for the
simulated scenarios were RV, EF and CX, and the observed output was the development time.
Given that the proposed model uses parameters collected during the early phases and given that
Vit Project requires a complete breakdown structure of the project, which can be done only in
the late phases, there was a considerable time gap between the two measurements. This time gap
is less than for a post-mortem analysis, but it is sufficient for model calibration and validation

purposes.

The simulation results were analyzed statistically, with the finding that the Weibull
probability distribution was the best fit for all the samples. A random variable x is said to have a
Weibull distribution with parameters c., f and y (with o > 0, B > 0) if the probability distribution
function (pdf) and cumulative distribution function (cdf) of x are respectively:

[0, x<vy

pdf: f(x; o, B, y) = 4
(o/B*) (x -)*" exp(-((x - Y)/B)*), X2y
[0, x<y

cdf: F(x; o, B, y) = {
1 —exp(-(x¥)/B) % X2y

The random variable under study, x, can be interpreted as development time in our context.
The shape parameter o controls the skew of the pdf, which is not symmetric. We found that this
is mostly related to the efficiency of the organization (EF). The scale parameter [3 stretches or
compresses the graph in the x direction. We found that this parameter is related to the efficiency
(EF), requirements volatility (RV), and complexity (CX) measured in LGC. The shifting
parameter Yy is shifts the origin of the curves to the right. We found that it is mostly related to the
complexity measured in LGC.

Based on best fit to our simulation results, the model parameters can be derived from the
project metrics using the following algorithm:

If (EF > 2.0) then o = 1.95;
Y =22 * 0.32*%(13*1n(LGC)—82);
B =1 /(5.71+(RV-20)*0.046);
else o = 2.5;
Y = 22 * 0.85*%(13*1n(L.GC)—82);
B =1v/(5.47-(RV-20)*0.114);
end if;

The model estimates the following cumulative probability distribution for project completion on
or before time x:

P(x) =1 - exp(-(((x - )/B)*)) // where x is time in days

This equation can be inverted to obtain the schedule length needed to have a probability P of
completing within schedule, with the following result.

x =7 + B(-1n(1-p))

The probability P can be interpreted as a degree of confidence in the ability of the project to
successfully complete within a schedule of length x. Applying the above equation to estimate
the development time needed for a 95% chance of completion within schedule for 16 different
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scenarios simulated using Vit Project, we observed a standard error of 22 days. The worst case
was an error of 60 days for a project of 520 days (12%). The comparison of estimated time and
simulated time is shown below.

700

g 6w I

5

£ 50 l

=

2

5 400

E

S 3 he -

3 1,1 * t= duration

g 2w £ |+ estimated

s

£ 10 S

£ o

m 0 T T T T T T —
0 100 200 300 400 500 600 700
Simulated project completion time, daydays

S. Integrating Risk Assessment into Prototyping

The model presented in the previous section is designed to support an iterative prototyping
and software development process. In this process, an initial problem statement, a prototype
demo or problem reports from a deployed software product trigger an issue analysis, followed
by formulation of proposed requirements changes, and specification of a proposed adjustment to
the software requirements, which can be initially empty. At this point in each cycle, the project
manager should perform a risk assessment step. The results of the risk assessment step guide the
degree of detail to which requirements enhancements are demonstrated, and the set of
requirements issues to be considered in the next prototyping cycle, if any.
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The first measurement-based risk assessment step can be performed after specification of
the first version of the prototype architecture, based on the requirements volatility, LGC and
efficiency measurements from the steps just performed.

In cases where risk assessments are required even earlier, before any prototyping has been
done, estimates of team efficiency and requirements volatility can be based on measurements of
similar past projects, and initial complexity estimates can be based on subjective guesswork of
the kind currently used in the macro model approaches. This kind of estimate may be less
reliable than those based solely on measurements, but it can provide a principled and reasonably
accurate basis for deciding whether or not to start a prototyping process to determine the
requirements for a proposed development project. Thus parts of our approach can be used truly
at the very beginning of the process.

If a prototyping effort is approved, early measurements of the process could be used to
refine the initial estimates of the model parameters using Bayesian methods, thus providing a
balanced and systematic transition from subjective guesswork, coded as an a priori distribution,
to assessments increasingly based on systematic measurement. Such an approach also supports
incorporation and systematic refinement of measurements from previous cycles of the iterative
prototyping process.

The results of risk assessment can provide guidance on the degree to which the project can
afford to explore requirements enhancements requested by the customers. It can also help
customers or marketing departments to decide how much they really want possible
improvements, in the context of the resulting time and cost estimates. Systematic cost/benefit
analysis becomes possible only with the availability of reasonably accurate estimates.

The risk assessment step can thus provide a balancing force to stabilize the requirements
formulation process. In the absence of information on how much potential enhancements will
cost, stakeholders are prone to unrealistic requirements amplification — of course they would
always like to have a better system, no matter how good the existing one is, if you do not ask
them to pay for the improvements. The proposed risk assessment steps can provide a realistic
basis for incorporating time and cost constraints and cost/benefit tradeoffs early in the process,
when the situation is fluid and many options are open.

This process refinement provides some additional insight into the dynamics of iterative
prototyping: the iterative process should stop when the customers have determined what
requirements they can afford to realize, and which of many possible improvements they will be
willing to pay for, if any. It is not necessarily the case that the set of criticisms elicited by the
final round of prototype demonstrations is empty — that is true only in an idealized world with
adequate budgets and patient customers.

6. Conclusion

This paper introduces a formal risk assessment model for software projects based on
probabilities and metrics automatically collectable from the project baseline. The approach
enables a project manager to evaluate the probability of success of the project very early in the
life cycle, during an iterative requirements formulation process, based on well-defined
measurements rather than just guesswork or subjective judgments.

For more than twenty years, estimation standards have been characterized by a common
limitation: the requirements should be frozen in order to make estimates. This model presented
in this paper removes this important limitation, facing the reality that requirements are
inherently variable.

The model is perfectly suited for any evolutionary software process because it follows the
same philosophy. The risk assessment and estimation steps are conducted at each evolutionary
cycle with increasing knowledge and decreasing variance. The research formalizes an 151




improvement in the evolutionary software process, introducing a risk assessment step that can
be automated, and that can help shape the planning of the project in the early stages when there
is still substantial freedom to allocate available time and budget.
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Abstract

APT (Automated Prototyping Tool-Kit)
is an integrated set of software tools that
generate source programs directly from
real-time requirements. The APT system
uses a fifth-gencration prototyping
language to model the communication
structure, timing constraints, I/O control,
and data buffering that comprise the
requirements for an embedded software
system. The language supports the
specification of hard real-time systems
with reusable components from domain
specific component librarics. APT has
been used successfully as a research tool
In prototyping large war-fighter control
systems (e.g. the command-and-control
station, cruisc missile flight control
System, patriot missile defense systems)
and demonstrated its capability to
support the development of large
complex embedded software.

Keywords: APT, Automated
Prototyping, Real-Time Systems,
Command and Control, Formal Methods,
Evolution, Reuse, Architecture,
Components, PSDL

1 INTRODUCTION
Software project managers are

often faced with the problem of 1nability
to accurately and completely specify

requirements for real-time software
systems, resulting in poor productivity,
schedule overruns, unmaintainable and
unreliable software. APT is designed to
assist program managers to rapidly
evaluate requirements for military real-
time control software using executable
prototypes, and to test and integrate
completed subsystems through
evolutionary prototyping. APT provides
a capability to quickly develop
functional prototypes to verify feasibility
of system requirements early in the
software  development process. It
supports an evolutionary development
process that spans the complete life-
cycle of real-time software.

2 THE AUTOMATED
PROTOTYPING TOOL-KIT (APT)

The value of computer aided prototyping
in software development is clearly
recognized. It is a very effective way to
gain understanding of the requirements,
reduce the complexity of the problem
and provide an early validation of the
system design. Bemstein estimated that
for every dollar invested in prototyping,
one can expect a $1.40 return within the
life cycle of the system development [1].
To be effective, prototypes must be
constructed and modified rapidly,
accurately, and cheaply [8]. Computer
aid for rapidly and inexpensively
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constructing and modifying prototypes
makes it feasible [10]. The Automated
Prototyping Tool-kit (APT), a research
tool developed at the Naval Postgraduate
School, is an integrated set of software
tools that generate source programs
directly from high level requirements
specifications [7] (Figure 1).

It provides the following kinds of
support to the prototype designer:

(1) timing feasibility checking via
the scheduler,

(2) consistency checking and
automated assistance for project
planning, configuration

management, scheduling,
designer task assignment, and
project completion date
estimation via the Evolution
Control System,

(3) computer-aided design
completion via the editors,

(4) computer-aided software reuse
via the software base, and

(5) automatic generation of wrapper
and glue code.

The efficacy of APT has been
demonstrated in many research projects
at the Naval Postgraduate School and
other facilities.
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Figure 1. The APT Rapid Prototyping Environment
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2.1 Overview of the APT Method
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Figure 2. Iterative Prototyping Process in APT

There are four major stages in the APT
rapid prototyping process: software
system design, construction, execution,
and requirements evaluation and/or
modification (Figure 2).

The initial prototype design starts with
an analysis of the problem and a
decision about which parts of the
proposed system are to be prototyped.
Requirements for the prototype are then
generated,  either  informally (e.g.
English) or in some formal notation.
These requirements may be refined by
asking users to verify their completeness
and correctness.

After some requirements analysis, the
designer uses the APT PSDL editor to
draw dataflow diagrams annotated with
nonprocedural control constraints as part
of the specification of a hierarchically
structured prototype, resulting in a
preliminary, top-level design free from

programming level details. The user may
continue to decompose any software
module until its components can be
realized via reusable components drawn
from the software base or new atomic
components.

This prototype is then translated into the
target  programming language for
execution and evaluation. Debugging
and modification utilize a design
database that assists the designers in
managing the design history and
coordinating change, as well as other
tools shown in Figure 3.

2.2 APT as a Requirements
Engineering Tool

The requirements for a software system
are expressed at different levels of
abstraction and with different degrees of
formality. The highest level
requirements are usually informal and
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imprecise, but they are understood best
by the customers. The lower levels are
more technical, precise, and better suited
for the needs of the system analysts and
designers, but they are further removed
from the user's experiences and less well
understood by the customers. Because of
the differences in the kinds of
descriptions needed by the customers
and developers, it is not likely that any
single representation for requirements
can be the “best” one for supporting the
entire software development process.
APT provides the necessary means to
bridge the communication gap between
the customers and developers. The APT
tools are based on the Prototype System
Description Language (PSDL), which is
designed specifically for specifying hard
real-time systems [5, 6]. It has a rich set
of timing specification features and
offers a common baseline from which
users and software engineers describe
requirements. The PSDL descriptions of
the prototype produced by the PSDL
editor are very formal, precise and
unambiguous, mecting the needs of the
system analysts and designers. The
demonstrated behavior of the executable
prototype, on the other hand, provides
concrete information for the customer to
assess the validity of the high level
requirements and to refine them if
necessary.

2.3 APT as a System Testing and
Integration Tool

Unlike throw-away prototypes, the
process supported by APT provides
requirements and designs in a form that
can be used in construction of the
operational system. The prototype
provides an executable representation of
system requirements that can be used for
comparison during system testing. The

existence of a flexible prototype can
significantly ease system testing and
integration. When final implementations
of subsystems are delivered, integration
and testing can begin before all of the
subsystems are complete by combining
the final versions of the completed
subsystems with prototype versions of
the parts that are still being developed.

2.4 APT as an Acquisition Tool

Decisions about awarding contracts for
building hard real-time systems are risky
because there is little objective basis for
determining whether a proposed contract
will benefit the sponsor at the time when
those decisions must be made. It is also
very difficult to determine whether a
delivered system meets its requirements.
APT, besides being a useful tool to the
hard real-time system developers, is also
very useful to the customers. Acquisition
managers can use APT to ensure that
acquisition efforts stay on track and that
contractors deliver what they promise.
APT enables validation of requirements
via prototyping demonstration, greatly
reducing the risk of contracting for real-
time systems.

2.5 A Platform Independent User
Interface

The current APT system provides two
interfaces for users to invoke different
APT tools and to enter the prototype
specification. The main interface (Figure
3) was developed using the TAE+
Workbench [11]. The Ada source code
generated automatically from the graphic
layout uses libraries that only work on
SUNOS 4.1.X operating systems. The
PSDL editor (Figure 4), which allows
users to specify the prototype via
augmented dataflow diagram, was
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implemented in C++ and can only be
executed under SUNOS 4.1.X
environments. A portable
implementation of the APT main
interface and the PSDL editor was
needed to allow users to use APT to

build PSDL prototypes on different
platforms. We choose to overcome these
limitations by reimplementing the main
interface (Figure 5) and the PSDL editor
(Figure 6) using the Java programming
language [2].

ST

|

The new graphical user interface, called
the Heterogeneous Systems Integrator
(HSI), is similar to the previous APT.
Users of previous APT versions will
easily adapt to the new interface. There
are  some new features in this
implementation, which do not affect the
functionality of the program, but provide
a friendlier interface and easier use. The
major improvement is the addition of the
tree panel on the left side of the editor.
The tree panel provides a better view of
the overall prototype structure since all

Figure 6. PSDL Editor of the new APT

of the PSDL components can be seen in
a hierarchy. The user can navigate
through the prototype by clicking on the
names of the components on the tree
panel. Thus, it is possible to Jjump to any
level in the hierarchy, which was not
possible earlier.

3 A SIMPLE EXAMPLE:
PROTOTYPING A C3I
WORKSTATION
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To create a first version of a new
prototype, users can select “New” from
the “Prototype” pull-down menu of the
APT main interface (Figure 7). The user
will then be asked to provide the name

of the new prototype (say “c3i_system”)
and the APT PSDL editor will be
automatically invoked with a single
initial root operator (with a name same
as that of  the  prototype).

Figure 7. Creating a new prototype called C31_System

APT allows the user to specify the
requirements of prototypes as augmented
dataflow graphs. Using the drawing tools
provided by the PSDL cditor, the user
can create thc top-level dataflow
diagram of the c¢3i_system prototype as
shown in Figure 8, where the ¢3i_system
prototype is modcled by ninc modules,
communicating with cach other via data
streams. To model the dynamic behavior
of these modules, the dataflow diagram
is augmented with control and timing
constraints. For example, the user may
want to specify that the
weapons_interface module has a
maximum response time of 3 seconds to
handle the event triggered by the arrival
of new data in the weapon_status_data
stream, and it only writes output to the
weapon_emrep stream if the status of the
weapon_status_data is damage,
service_required, or out_of ammunition.
APT allow the user to specify these
timing and control constraints using the
pop-up operator property menu (Figure

9), resulting in a top-level PSDL
program shown in Figure 10.

To complete the specification of the
c3i_system prototype, the user must
specify how ecach module will be
implemented by  choosing  the
implementation language for the module
via the operator property mecnu. The
implementation of a module can be in
cither the target programming language
or PSDL. A module with an
implementation in the target
programming language is called an
atomic operator. A module that 1s
decomposed into a PSDL
implementation is called a composite
operator. Module decomposition can be
done by selecting the comesponding
operator in the tree-panel on the left side
of the PSDL editor.

APT  supports an incremental

prototyping process. The user may-

choose to implement all nine modules as
atomic  operators  (using dummy
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components) in the first version, so as to
check out the global effects of the timing
and control constraints. Then, he/she
may choose to decompose the
comms_interface module into more

detailed subsystems and implement the
sub-modules with reusable components,
while leaving the others as atomic
operators in the second version of the
prototype, and SO on.
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Figure 9. Pop-up Operator Property Menus
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To facilitate the testing of the
prototypes, APT provides the user with
an execution support system that
consists of a translator, a scheduler and a
compiler. Once the wuser finishes
specifying the prototype, he/she can
invoke the translator and the scheduler
from the APT main interface to analyze
the timing constraints for feasibility and
to generate a supervisor module for each
subsystem of the prototype in the target
programming language. Each supervisor
module consists of a set of driver
procedures that realize all the control
constraints, a high priority task (the
static schedule) that exccutes the time-
critical operators in a timely fashion, and
a low priority dynamic schedule task that
executes the non-time-critical operators
when there is time available. The
supervisor module also  contains
information that enables the compiler to
incorporate all the software components
required to implement the atomic
operators and generate the binary code
automatically. The translator/scheduler
also generates the glue code needed for
timely delivery of information between
subsystems across the target network.

For prototypes which require
sophisticated graphic user interfaces, the
APT main interface provides an
interface editor to interactively sculpt the
interface. In the c3i_system prototype,
we choose to decompose the
comms_interface, the
track_database_manager and the
user_interface modules into subsystems,
resulting  in  hierarchical  design
consisting of 8 composite operators and
twenty-six atomic operators. The user
interface of the prototype has a total of
14 panels, four of which are shown in
Figure 11. The corresponding Ada

program has a total of 10.5K lines of
source code. Among the 10.5K lines of
code, 3.5K lines comes from supervisor
module that was generated automatically
by the translator/scheduler and 1.7K
lines that were automatically generated
by the interface editor [9].

4 CONCLUSION

APT has been used successfully as a
research tool in prototyping large war-
fighter control systems (e.g. the
command-and-control  station, cruise
missile flight control system, missile
defense systems) and demonstrated its
capability to support the development of
large complex embedded software.
Specific payoffs include:

(1) Formulate/validate requirements
via prototype demonstration and
uscr feedback

(2) Assess feasibility of real-time
system designs

(3) Enable  early testing and

integration of completed
subsystems

(4) Support  evolutionary  system
development, integration and
testing

(5) Reduce  maintenance  costs
through systematic code
generation

(6) Produce high quality, reliable
and flexible software
(7) Avoid schedule overruns

In order to evaluate the benefits derived
from the practice of computer-aided
prototyping  within  the  software
acquisition process, we conducted a case
study in which we compared the cost (in
dollar amounts) required to perform
requirements analysis and feasibility
study for the c3i system using the 2167A

161




process, in which the software is coded
manually, and the rapid prototyping
process, where part of the code is
automatically generated via APT [3]. We
found that, even under very conservative
assumptions, using the APT method
resulted in a cost reduction of $56,300, a
27% cost saving. Taking the results of
this comparison, then projecting to a

mission control software system, the
command and control segment (CCS),
we estimated that there would be a cost
saving of 12 million dollars. Applying
this concept to an engineering change to
a typical component of the CCS software
showed a further cost savings of
$25,000.
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Conceptual Level Graph Theoretic Design and Development of

Complex Information System

Abstract: This paper introduces a graph-oriented model for conceptual level design of large, complex
information systems. This has been shown to be highly effective to the system designer from the
perspectives of maintainability and upgradability. Basically due to the flat structure and the lack of
holding multidimensional data, the relational model does not provide a structural approach to the
system designer. The other alternative object oriented model offer the structured approach but also not
able to describe various intermodular relationships spread over same or different levels within a data
model. The graph data model also allows dynamic regrouping of related entities at the designers’ level.
We have proposed the appropriate data structure and the corresponding DDL has also been developed.
Test runs on simulated environment further establish its computational efficiency.

Keywords: Graph oriented data model, Semantic view, Functional abstraction, Encapsulation of data
and relationships.

1. Introduction

The environments in which database management systems are being used have changed rapidly in
the last several years. Although the relational model has made prominent contribution in the research of
DBMS, recent database applications are outgrowing this model. The table based relational model is not
the best approach to express complex and diverse databases. In this model, relationships among records
are not structurally specified and due to this flat structure of the relational model, this is not useful to a
user attempting to comprehend the logical structure actually existing in a schema. The alternative idea
provide the concept of a class which can encapsulate homogeneous objects but there are no direct means
to describe the mutual relationships amongst the objects within a class or to express the intermodular
relationships spread over same or different levels. So our goal is to design a data model providing a
structural approach which retains the desirable properties of the relational and object oriented model and
simultaneously overcome the bottleneck of these schemes through the incorporation of some new
features. In this effort, a graph based data model at conceptual level having the concept of functional
abstraction has been developed. The significant improvement is expected corresponding tograph model
in the context of maintainability, adaptability and transparency from the view of a system designer.

Here we discuss related work done in the areas of graph-based data models, object oriented
approach in graph data models, semi-structured data and view update. Abiteboul in [2] uses semi-
structured data that is neither raw data (file systems) nor strictly typed (table-oriented or object
oriented). Even if semi-structured data may have a structure, this structure is often implicit, and not as
rigid or regular as that found in standard database systems. In [3] an OQL like query language extended
with information retrieval tools is proposed to query SGML and HTML documents. Buneman in [5]
defines semi-structured data as that for which the information normally associated with a schema is
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contained within the data itself. An attempt has been made to represent semi-structured data as graph
like or tree like structure, where edges are labeled representing data types and leaves stand for raw data.
In [6] a query language (UnQL) is adapted, which solves some of the limitations of SQL like languages
for semi-structured data. Related work is also being conducted in both the area of semi-structured data
access and querying. The graph data model presented here uses similar structure as in the ER data
model [7], representing atomic entities by nodes and relations among them by links. However the
database schema represented by the ER data model is not accessible by the DBMS, whereas in the graph
data model the structure of the database is represented as part of the graph database itself. In [8] a graph
model is proposed as underlying unified data model to access different databases expressed in standard
data models. The query language is formally defined in terms of graphical primitives (atomic queries). A
global information management system was developed providing a global framework where data on the
web is accessed through conceptual views. GOOD [9,10,11] started as a database interface, then evolved
as a graph object oriented database system. Actually, it is a graph representation of an object oriented
database, where nodes represent objects and links represent relationships between objects. The GRAS
data model [12] relies on attributed graphs. In this model, objects are represented by typed nodes, which
may carry attributes. Relations between objects are modeled by bi-directional edges. In our model, we
are trying to focus more on the concept of semantic groups providing the concept of functional
abstraction for querying and updating data model but all the previous works are focused on defining a
new approach to represent the graph data model itself.

Our goal is to provide a tool to the system designer level for describing and maintaining a complex
semi-structured information system in a better way. So we have proposed a methodology to develop a
directed graph model in the logical level as (V.E) where a node V represents a basic data object or a
functionally abstracted module and an edge implies the binary relationships between the entities present
in the graph data model. In the graph model we can encapsulate the nodes of lower level under a
functional abstraction node from a specific semantic view. There is no restriction on the existence of
relationships among the nodes in a graph. Based on the graph based data model framework, we have
developed a data description language (DDL) for easy description and modification of the entity and
their relationships within a complex information system. A quite user-friendly script is provided to the
system designer for easy description of the conceptual level. In DDL, we have generated a friendly
script for the system designer; a mathematical script has been generated also for each statement (e.g.
relation, encapsulation) of the designer script and according to the operation described in the
mathematical script the software will be executed generating the data structure as a output. These entire
concepts have been crystallized in the form of a software tool, which has also been subsequently
implemented.

2. The proposed data model and corresponding data structure

The conceptual level of a semi-structured information system is represented by the graph model
depicted in fig.1. Here the basic instances of entity (lowest level vertices) or the functionally abstracted
module is indicated by the vertex and the relationship among them by directed edges. In this graph data
model the vertices indicated by triangle, square and circle indicate the node in the lowest level,
intermediate level and the top most level respectively. The concept of encapsulation is implemented
within the graph with respect to a functional abstraction node from a specific scientific view e.g. the
nodes 4,5,6,7 and 8 are encapsulated in a same class under the functional abstraction node 2 reflecting a
specific semantic view. The parallel edge between the nodes 4 and 5 indicate the existence of two
different relation declared from two different semantic, declared with respect to abstraction node 1 and
2. It has been suggested a suitable data structure to declare the conceptual level of the data model
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depicted in fig.1. A pointer array maintains the growth of this graph — with each element of the array
representing a vertex in the graph. Each element of array points to a doubly linked list, right link
maintains the set of vertices encapsulated by it and the left link points to the set of vertices within each
of which it exists as a vertex of the encapsulated subgraph.

(Figure 1 : The Data Model)

Each element of the linked list is a structure of three elements —the vertex no., type of relation (i.e.
encapsulation is represented by tag L and direct edge is denoted by tag E) and the functional abstraction
node on which the relation is based on. The assumption has been made for creation of the data structure
that the highest level vertices 1,2,3 are encapsulated within the vertex 0, which is treated as the top most
level node. This is indicated by a high value in the left link of the vertex indicated by 0. The right link
of node 1 indicates that an encapsulation class has been formed with the member 3,4 and 5 under the
functional abstraction node 1 and there is a direct edge from 1 to 2 defined with respect to abstraction
node 0. Similarly the left link indicates that the functional abstraction node 1 itself is encapsulated as a
member under the node O and there is a direct edge from 9 to the node 1.Also from the linked lists
corresponding the node 4, we can say that the node 4 is encapsulated as a member in the two
encapsulation class generated under the node 1 as well as 2 and there is a parallel edge between 4 and 5
defined with respect to higher level node 1 and 2 respectively.
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(Table 1: Data structure for fi gure 1 Data model)

3. Data Description Language

A data description language is also introduced in this paper by which the system designer will be
able to easily describe the graph based data model and also can modify according to the need of the
application. A user-friendly script is provided to designer for easy description of the data model. The
equivalent mathematical script (relations) is being generated and executed through the procedures
provided in the software producing the data structure i.e., the data model as an output.

3.1.  Creation of the graph model

The DDL provided here have a two-fold job; one is to create the graph model depending upon the
information available to system designer initially and modify it according to the requirement of the
application. In this section we have described that how the data model depicted in fig.1 will be created

as per this DDL.

We consider that there are three basic operations from the data description point of view.

a. Creation of nodes, as an element of an array.

b. Encapsulation of nodes belonging to a semantic class with respect to a higher level
functional abstraction node.

C. Declaration of direct relationship amongst nodes within the graph.

The syntax of the user-friendly script for the operations referred above as a to ¢ is given below.

CREATE GRAPH [GRAPHNAME] [NO OF NODES];
ENCAP [CLASSNAME] [MEMBER OF CLASS] UNDER [FUNCTIONAL ABSTRACTION NODE];
CREATE REL [RELATION NAME] WITH [CLASSNAME] FOR [NODES INVOLVED IN
RELATIONJ; So to declare the data model of fig.] the designer have to declare the data and their
relations according to the syntax already given.
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CREATE GRAPH G1 17; * Initially we want to create a graph model named G1 of 17 nodes.

ENCAP EO [1,2,9] UNDER 0; * The nodes 1,2 and 9 will be encapsulated under the node 0 and it will
be identified by relation EO.

CREATE REL R1 WITH EO FOR [1,2];

CREATE REL R2 WITH EO FOR [9,1];

- CREATE REL R3 WITH EO FOR [9,2]; * This statement indicates that the relation named R1 reflects
an edge between 1 and 2 defined with respect to the functional abstraction node mentioned in relation
EO i.e. 0. Instead of the above three statements, we can write CREATE REL R1,R2,R3 WITH EO FOR
[1,2],09,11,[9,2].

ENCAPEI [3,4,5] UNDER 1;

CREATE REL R4 WITH E1 FOR [4,5];

ENCAP E2 [4,5,6,7,8] UNDER 2;

CREATE REL R5 WITH E2 FOR [4,5];

CREATE REL R6 WITH E2 FOR [7,8];

In the above manner we have to express all the relations amongst nodes within the graph. Then the
equivalent internal form will be generated after compilation and the corresponding script is described
~ here.

v G1 [0-16]; * The symbols y and ¢ are used for creation and encapsulation respectively.

E0 = ¢ [1,2,91%

R1 = [1,2]/ EO; * Direct relation between 1 & 2 is defined with respect to the functional abstraction
node present in relation EO.

R2= [9,1}/EO;
R3= [9,2)/ EO;
El=¢[34.5]"
R4 = [4,5)/El;
E2 = ¢ [4,5,6,7,8];
R5= [4,5)/E2;
R6 = [7,8)/E2;

Now these mathematical expressions, as declared by the designer, are treated as an input of the
software (also provided in DDL) and the corresponding data structure is generated as output.

The complexity of the algorithm for development of data structure from a graph of n vertices, as
specified by the system designer, is O(n%). This has been tested in a simulated environment. A random
graph with degree varying from 4 to a maximum number of 10 has been considered as input to the
algorithm and the corresponding data structure has been generated. The execution time has been plotted
against the number of vertices as shown below.

Number Execution time (in secs)
f node

ofhodes Degree 4| Degree 7 - Degree 10
200 0.054989
300 0.054989 0.054989
400 0.054989 0.10989
500} 0.054989| 0.10989 0.10989
600; 0.10989| 0.164835 0.21978

7001 0.10989] 0.274725 0.384615
8001 0.164835| 0.32967 0.549451
900f{ 0.21978| 0.43956 0.659341
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3.2. Modification of the graph model

In context to the modification of a graph model the basic operations are:
a. Insertion of node(s) in the graph model.
b. Deletion of an existing node.
¢. Modification of an encapsulation class from a different semantic view.
d. Modification of an already existing edge.

The syntax of the user-friendly script of the operations referred here as a to d is given below.
OPEN GRAPH [GRAPH MODEL NAME]: * Initially the designer have to open the graph model G1
for modification.
INSERT NODE [NO. OF NODES];
DELETE NODE [NODES];

Generally the designer can delete only the lowest level nodes. The nodes selected for deletion
including the relations involving these nodes will be deleted as a result of this operation. But if this
attempt has been made for any functional abstraction node, all the nodes encapsulated within it will also

be deleted including the specified node after getting an assurance for this operation from the system
designer.

The operation referred above as ¢ can be implemented by insertion of a node into an encapsulation
class from another class or by substitution of a group of nodes by the members of a different class. In
this case, all the relations involving the nodes take place in the operation are deleted. Again the designer
have to define the new relationship from a different semantic aspect.

INSERT NODE(S) [NODES] OF CLASS [CLASSNAME] WITHIN CLASS [CLASSNAME];
MODIFY NODE(S) [NODES] OF CLASS [CLASSNAME] BY [NODES] OF CLASS
[CLASSNAME];

There are two cases regarding the operation d, either we want to delete an existing relation or to
insert a new relation between a pair of node with respect to an abstraction node.

DELETE REL [NODE1,NODE2,ABSTRACTION CLASS]; 170




- INSERT REL [NODE1,NODE2,ABSTRACTION CLASS];
The specified graph model must be closed after the completion of the modification.
CLOSE GRAPH [GRAPH MODEL NAME].

Let us describe the modification of the graph model with an example. We assume the system
designer want to perform the following modifications on the graph model of fig.1.

1. Insert two new nodes in the graph model.

2. Enter these two nodes in the encapsulation class headed by functional abstraction node 2.

3. Replace the node 3 of encapsulation class headed by node 1 by the node 7 of the class under

node 2.
4. Create an edge from node 7 to 5 with respect to node 1.
5. Delete the edge between 4 and 5 defined with respect to node 2.

To perform the modifications mentioned above, the designer script will be:
OPEN GRAPH G1;
INSERT NODES [2];
INSERT NODES [17,18] OF CLASS EO WITHIN CLASS E2;
MODIFY NODE [3] OF CLASS E1 BY [7] OF CLASS E2;
INSERT REL [7,5,E1];
DELETE REL [7,8,E2];
CLOSE GRAPH Gl.
The equivalent mathematical script involving the new modified relations will be:
OPEN G1;
v [17-18]; * Create two new nodes in the graph model G1.
EO0= 4)[1,2,9,17,18]0; * By default , these two nodes are encapsulated within EO.
E2 = ¢[4.5,6,7.8, 17,18]2; *The modified class relation E2.
E0 = [1,2,91%
El = ¢[4,571%
E2 = ¢[3.4,5,6,17,18]%;
DEL REL R6; * Delete the previous relation involving node 7,named R6, as the previous relation may
not exist from the new semantic view. If required, re-describe the relation.
R6 =[7,5V/E1; * A new relation named R6 is generated.
DEL REL R5; * The relation between 7 & 8 with respect to node 2 (named R5) will be deleted.
CLOSEGI.
The mathematical script written above for the modification is also executed through the software
and the data structure of the conceptual data model will be modified accordingly.

4. Graph Data Model in Distributed Computing Environment

In recent years, almost all of the software should be compatible to distributed environment due to the
increasing trend towards the distribution of computer systems over multiple sites that are interconnected
via a communication network. So the distributed database concept with respect to our data model
implies that the graph designed by system designer must be spread over the sites of a computer network.
The fragmentation amount of the graph totally depends on the nature of specific application e.g. What
type of queries will be processed at a specific site; What are the necessary information related to these
queries, etc. Still in this section we propose some general fragmentation methodologies of the graph
model to achieve the improved performance.Depending upon the nature of the queries and the related
necessary information to process these queries, the relevant portion of the graph, i.e. the semantic groups
must be distributed amongst the sites. We termed this method as Graph fragmentation. It may be the
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case that one can keep the necessary information (occurrences) within a group instead of storing all
members of that group. This is decided dynamically through generation of certain constraints. In that
case the entire copy of the semantic group must be kept in another site to avoid the loss of information.

In some cases, we have to keep more than one copy of the same semantic group in different sites.
In spite of the chances of generating inconsistency during updation, the replication is to be allowed to
increase the availability and to reduce the communication cost for accessing data from different sites. In
our data model, described in section 2, we have allowed to declare the relationship between the meber of
different groups spread over different levels. After fragmentation, the mutual relationship within the
group must belong to the subgraph present in the local site. A table, named Link table, has been
maintained to keep track of information regarding relationship of any node in the local site with another
node in some other site. This has been illustrated with an example in the next paragraph.

Suppose there are three sites S1, S2 and S3 with respect to abstract data model as depicted in fig.

1 and analysing the query to be processed, the designer has taken the decision about distribution in the
following manner.

Site I:  Semantic groups encapsulated under functional abstraction node 1 and 2.
Site 2:  Semantic groups encapsulated under functional abstraction node 2 and 8.
Site3:  Semantic groups encapsulated under functional abstraction node 9and 11.

According to the fragmentation scheme described above, the data structure depicted in Table 1 will
also be decomposed amongst the sites. The figure 2 implies the subgraph belongs to site 1 and the Table
2 indicates the corresponding data structure. Here the dotted lines and vertices indicate that these are not
belonging within the site 1 but for query processing these vertices or links may be required.

< 7
|| 4

3

8| s
s 8

(Figure 2 : Fragmented Graph model for site 1)
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(Table 2: Data structure for Site 1)

Now if the queries to be processed in site 1 are generally based on retrieval, then the nodes 13,
15 and 9 should be replicated into site 1. Otherwise, a link table for site 1 is maintained using which
information can be fetched from different sites to process the queries.

Site Number | Vertex 1 | Vertex 2
2 6 13
3 6 15
3 9 1
3 9 2

(Table 3 : Link Table for site 1)

The task for creating site 1 can be accomplished by the following set of commands provided in
the proposed data model.

Open graph G1;
Fragment group 1,2 into sitel;

In a similar way, the other sites can be created and be joined back to regenerate the data model in
figure 1 by the graph join operation provided in our data model.

5. Conclusion

In this paper, an attempt has been made to present an alternative approach for storage and
maintenance of semi-structured data based information system. A better performance may be obtained
from our data model due to the point mentioned below.

Maintainability: The relational model is not providing a structured approach of the entities present in a
large information system. So to find out the actual relations among entities scattered through different
tables or the relations between tables, the designer has to derive the relations via common attributes
searching through the tables. In a complicated large system, it will be a cumbersome process. But due to
the provision of the structured approach in our proposed model, the designer can easily find out the
relationships between some attributes (lowest level node) or some functional abstraction node directly
via the option provided in our DDL.

Adaptability: It will be an ideal condition to the system designer, if all information regarding the
application is clearly known at the right of the beginning. Unfortunately, in practical, we have to initiate
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the design process with only limited knowledge and the system is going to be gradually enriched with
the inclusion of new information. So the data model should provide the feature of easy inclusion of new
information on the existing data model. The proposed model is flexible one to offer the designer to
easily incorporate new information as node in the graph and to describe the relations of the new nodes
with the existing nodes through edges. It also provides the facility to redefine the relationships from a
different semantic view and accordingly the designer can also maintain the different semantic view of
the same data model as per the requirement. So this model is a really adaptable one providing more than
one view of same data model with respect to separate semantic to the system designer level. (This view
is totally different from the view provided to the end user level)

Context sensitivity of the relations: The concept of functional abstraction is introduced to increase the
effectiveness of the model. The designer will be able to formulate the behavioral aspects of the entities
by forming an encapsulation class with respect to a functional abstraction node and can declare the
mutual relationships among the members of the class. All these relations are context sensitive i.e.
declared from a specific semantic which is incorporated within functional abstraction node e.g. the
parallel edge within node 4 and 5 in fig.1 is context sensitive: one is defined with respect to abstraction
node 1 and the other with respect node 2. So the significant improvement has been expected for this
graph based data model in the context of the points mentioned in this section. The present work may
further be consolidated by treating a Table as node in lieu of occurances of the attributes to maintain the
user-friendlyness at the end user level.
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Measuring and Evaluating
Maintenance Process Using

Reliability, Risk,

and Test Metrics

Norman F. Schneidewind, Fellow, IEEE

Abstract—In analyzing the stability of a maintenance process, it is important that it not be treated in isolation from the reliability and
risk of derloying the software that result from applying the process. Furthermore, we need 1o consider the sfficiency of the test effort
that is a part of the process and a determinate of reliability and risk of deplayment. The relationship between product quality and
process capability and maturity has been recognized as a major issue in software engineering based on the premise that
improvemants in process wiii lead to higher quality products. To this end, we have been investigating an impontant facet of process
capability—stability—as defrad and evaluated by trend, change, and shape metrics, across releases and witnin a release. Our
integration of product and process measurement serves the dual purpose of using metrics to assess and predict reliability and risk and
to evaluate process stability. We use the NASA Space Shuttle flight software to illustrate our approach.

Index Terms—Maintenance process stability, product and process integration, reliability risk.

1 INTRODUCTION

MEASURJ_\'G andl evaluating the stability of maintenance
processes is important because of the recognized
relationship between precess quality and product quality
[7]. We focus on the important quality factor reliability. A
maintenance process can quickly become unstable because
the very act of installing software changes the environment:
pressures operate to modify the environment, the problem,
and the technological solutions. Changes generated by
users and the environment and the consequent need for
adapting the software to the changes is unpredictable and
cannot be accommodated without iteration. Programs must
be adaptable to change and the resultant change process
must be planned and controlled. According to Lehman,
large programs are never completed, they just continue to
evolve [11]. In other words, with software, we are dealing
with a moving target. Maintenance is performed continu-
ously and the stability of the maintenance process has an
effect on product reliability. Therefore, when we analyzed
the stability of the NASA Space Shuttle software main-
tenance process, it was important to consider the reliability
of the software that the process produces. Furthermore, we
rieeded to consider the efficiency of the test effort that is a
part of the process and a determinate of reliability.
Therefore, we integrated these factors into 2 unified model,
which allowed us to measure the influence of maintenance
actions and test effort on the reliability of the software. Our
hypotnesis was that these metrics would exhibit trends and
other characteristics over time that would be indicative of
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Disisian, Naual Postgraduate Scheal, Monterey, CA 93943.
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the stability of the process. Our results indicate that this is
the case. '

We conducted research on the NASA Space Shuttle flight
software to investigate a hypothesis of measuring and
evaluating maintenance stability. We used several metrics
and applied them across releases of the software and within
releases. The trends and shapes of metric functions over
time provide evidence of whether the software maintenance

.process is stable. We view stability as the condition of a

process that results in increasing reliability, decreasing risk
of deployment, and increasing test effectiveness. In addi-
tion, our focus is on process stability, not code stability. We
explain our criteria for stability; describe metrics, trends,
and shapes for judging stability; document the data that
was collected; and show how to apply our approach.
Building on our previous work of defining maintenance
stability criteria and developing and applying trend metrics
for stability evaluation [15], in this paper we review related
research projects, introduce shape metrics for stability
evaluation, apply our change metric for multiple release
stability evaluation, consider the functionality of the soft-
ware product in stability evaluation, and interpret the
metric results in terms of process improvements.

Our emphasis in this paper is to propose a unified product
and process measurement model for product evaluation and
process stability analysis. The reader should focus on the
model principles and not on the results obtained for the
Shuttle. These are used only to illustrate the model concepts.
In general, different numerical results would be obtained for
other applications that use this model. v

Section 2 reviews related research. In Section 3, the
concept of stability is explained and trend and shape
mefrics are defined. Section 4 defines the data and the
NASA Space Shuttle application environment. Section 5
gives an znalysis of relationships among maintenance,
reliability, test effort, and risk, while Section 6 discusses

0C98-5589/99/$10.00 & 1939 IEEE
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both long term (i.e., across releases) and short term (ie.,
within a release), as applied to the NASA Space Shuttle.
Section 7 discusses our attempt to relate product metrics to
process improvements and to the functionality and ‘com-
plexity of the software. Conclusions are drawn in Section 8.

2 RELATED RESEARCH AND PROJECTS

A number of useful related maintenance measurement and
process projects have been reported in the literature. Briand
et al. developed a process to characterize software main-
tenance projects [3]. They present a qualitative and
inductive methodology for performing objective project
characterizations to identify maintenance problems and
needs. This methodology aids in determining causal links
between maintenance problems and flaws in the main-
fenance organization and process. Although the authors’
have related ineffective maintenance practices to organiza-
tional and process problems, they have not made a linkage
to product reliability and process stability.

Gefen and Schneberger developed the hypothesis that
maintenance proceeds in three distinct serial phases:
corrective modification, similar to testing; improvement in
function within the original specifications; and the addition
of new applications that go beyond the original specifica-
tions [5]. Their results from a single large information
system, which they studied in great depth, suggested that
software maintenance is a multiperiod process. In the
NASA Space Shuttle maintenance process, in contrast, all
three types of maintenance activities are performed con-
currently and are accompanied by continuous testing,

Henry et al. found a strong correlation between errors
corrected per module and the impact of the software
upgrade [6]. This information can be used to rank modules
by their upgrade impact during code inspection in order to
find and correct these errors before the software enters the
expensive test phase. The authors treat the impact of change
but do rot relate this impact to process stability.

Khoshgoftarr et al. used discriminant analysis in each
iteration of their project to predict fault prore modules in
the next iteration [10]. This approach provided an advance
indication of reliability and the risk of implementing the
next iteration. This study deals with product reliability but
does not address the issue of process stability.

Pearse and Oman applied a maintenance metrics index
to measure the maintainability of C source code before and
after maintenance activities [13]. This technique allowed the
project engineers to track the “health” of the code as it was
being maintained. Maintainability was assessed but not in
terms of process stability.

Pigoskiand Nelson collected and analyzed metrics onsize,
trouble reports, change proposals, staffing, and trouble report
and change proposal completion times [14]. A major benefit
of this project was the use of trends to identify the relationship
between the productivity of the maintenance organization
and staffing levels. Although productivity was addressed,
product reliability and process stability were not considered.

Sneed reengineered a client maintenance process to
conform to the ANSI/IEEE Standard 1291, Standard for
Software Maintenance [19]. This project is 2 good example
of how a starndard can provide a basic framework for a

process and can be tailored to the characteristics of the
project environment. Although applying 2 standard is an
appropriate element of a good process, product reliability
and process stability were not addressed.

Stark collected and analyzed metrics in the categories of
customer satisfaction, cost, and schedule with the objective
of focusing management’s attention on improvement areas
and tracking improvements over time [20]. This approach
aided management in deciding whether to include changes
in the current release, with possible schedule slippage, or
include the changes in the next release. However, the
authors did not relate these metrics to process stability.

Although there were similarities between these projects
and our research, our work differed in that we integrated:
1) maintenance actions, 2) reliabilizy, 3) test effort, and 4)
risk to the safety of mission and crew of deploying the
software after maintenance actions, for the purpose of
analyzing and evaluating the stability of the maintenance
process.

3 CONCEPT OF STABILITY
3.1 Trend Metrics

To gain insight into the interaction of the maintenance
process with product metrics like reliability, two types of
metrics were analyzed: trend and shape. Both types are
used to assess and predict maintenance process stability
across (long term) and within (short term) releases after the
software is released and maintained. Shape mefrics are
described in Section 3.2. By chronologically ordering metric
values by release date, we obtain discrete functions in time
that can be analyzed for trends across releases. Similarly, by
observing the sequence of metric values as continuous
functions of increasing test time, we can analyze trends
within releases. These metrics are defined as empirical and
predicted functions that are assigned values based on
release date (long term) or test time (short term). When
analyzing trends, we note whether an increasing or
decreasing trend is favorable [15]. For example, an increas-
ing trend in Time to Next Failure and a decreasing trend in
Failures per KLOC would be favorable. Conversely, a
decreasing trend in Time to Next Failure and an increasing
trend in Failures per KLOC would be unfavorable. A
favorable trend is indicative of maintenance stability if the
functionality of the software has increased with time across
releases and within releases. Increasing functionality is the
norm in software projects due to the enhancement that
users demand over time. We impose this condition because
if favorable trends are observed, they could be the result of
decreasing functionality rather than having achieved main-
tenance stability. When trends in these metrics over time are
favorable (e.g., increasing reliability), we conclude that the
maintenance process is stable with respect to the software
metric (reliability). Conversely, when the trends are
unfavorable (e.g., decreasing reliability), we conclude that
process is unstable. Our research investigated swhether there
were relationships among the following factors: 1) main-
tenance actions, 2) reliability, and 3) test effort. We use the
following types of trend metrics:
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L. Maintenance actions: KLOC Change to the Code (i.e.,
amount of code changed necessary to add given
functionality);

2. Reliability: Various reliability metrics (e.g., MTTF,
Total Failures, Remaining Failures, and Time to Next
Failure); and

3. Test effort: Total Test Time.

3.1.1 Change Metric

Although looking for a trend metric on a graph is useful, it
is not a precise way of measuring stability, particularly if
the graph has peaks and valleys and the measurements are
made at discrete points in time. Therefore, we developed a
Change Metric (CM), which is computed as follows:

. Note the change in a metric from one release to the

next (i.e., release j to release j+ 1).

If the change is in the desirable direction (e.g.,

Failures/KLOC decrease), treat the change in 1 as

positive. If the change is in the undesirable direction

(e.g., Failures/KLOC increase), treat the change in 1

as negative.

3. If the change in 1 is an increase, divide it by the
value of the metric in release j + 1. If the change in 1
is a decrease, divide it by the value of the metric in
release ;.

4. Compute the average of the values obtained in 3,
taking into account sign. This is the change metric
(CM). The CM is a quantity in the range —1,1. A
positive value indicates stability; a negative value
indicates instability. The numeric value of CM
indicates the degree of stability or instability. For
example, 0.1 would indicate marginal stability and
0.9 would indicate high stability. Similarly, —0.1
would indicate marginal instability and —0.9 would
indicate high instability. The standard deviation of
these values can also be computed. Note that CM
only pertains to stability or instability with respect to
the particular metric that has been evaluated (e.g.
Failures/KLOC). The evaluation of stability should
be made with respect to a set of metrics and not a
single metric. The average of the CM for a set of
metrics can be computed to obtain an overall metric
of stability. :

3.2 Shape Metrics

Inaddition to trends in metrics, the shapes of metric functions
provide indicators of maintenance stability. We use shape
metrics to analyze the stability of an individual release and
the trend of these metrics across releases to analyze long-term
stability. The rationale of these metrics is that it is better to
reach important points in the growth of product reliability
sooner than later. If we reach these points late in testing, it is
indicative of a process that is late in achieving stability. We
use the following types of shape metrics:

[ )

1. Direction and magnitude of the slope of a metric
function (e.g., failure rate decreases asymptotically
with total test time). Using failure rate as an example
within a release, it is desirable that it rapidly

RELIABILITY, RISK, AND TEST METRICS

decrease toward zero with increasing total test time
and that it have small values.
Percent of total test time at which a metric function
changes from unstable (e.g., increasing failure rate)
to stable (e.g., decreasing failure rate) and remains
stable. Across releases, it is desirable that the total
test time at which a metric function becomes stable
gets progressively smaller.

3. Percent of total test time at which a metric function
increases at a maximum rate in a favorable direction
(e.g., failure rate has maximum negative rate of
change). Using failure rate as an example, it is
desirable for it to achieve maximum rate of decrease
as soon as possible, as a function of total test time.

4. Test time at which a metric function reaches its
maximum value (e.g., test time at which failure rate
reaches its maximum value). Using failure rate as an
example, it is desirable for it to reach its maximum
value (i.e, transition from unstable to stable) as soon
as possible, as a function of total test time.

5. Risk: Probability of rot meeting reliability and safety
goals (e.g., time to next failure should exceed
mission duration}, using various shape metrics as
indicators of risk. Risk would be low if the
conditions in 1-4 above obtain.

54

3.3 Metrics for Long-Term Analysis

We use certain metrics only for long-term analysis. As an
example, we compute the following trend metrics over a
sequence of releases: :

1. Mean Time to Failure (MTTF).
2. Total Failures normalized by KLOC Change to tie

Code.

3. Total Test Time normalized by KLOC Change to the
Code.

4. Remaining Failures normalized by KLOC Change to
the Code.

5. Time to Next Failure.

3.4 Metrics for Long- and Short-Term Analysis

We use other metrics for both long-term and short-term
analysis. As an example, we compute the following trend
(1) and shape (2, 3, 4, and 3) metrics over a sequence of
releases and within a given release:

[ Percent of Total Test Time required for Remaining
Failures to reach a specified value.

2. Degree to which Failure Rate asymptotically ap-
proaches zero with increasing Total Test Time.

3. Percent of Total Test Time required for Failure Rate
to become stable and remain stable.

4. Percent of Total Test Time required for Failure Rate

to reach maximum decreasing rate of change (ie.,

slope of the failure rate curve).

Maximum Failure Rate and Total Test Time where

Failure Rate is maximum.

w

4 DATA AND EXAMPLE APPLICATION

We use the NASA Space Shuttle application to illustrate the
concepts. This large maintenance project has been evolving
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TABLE 1
Characteristics of Maintained Software Across NA SA Space Shuttle Releases (Part 1 )
Operational Rdeasn Leunch Mission Reiability Totd Failure
ncrement Date Dae Durgtion Predicticn Post Severity
(Days) Date Ddivery
Falures
Cre?2
A I T8 V2] Nc Flights 12985 6 Five3
: I Two 2
B o 1211285 823084 8/1484 . 10 Eight 3
: Two?2
C 6/8/84 4/12/85 1/17/85 ‘ 10 Seven 3
. Oned
Five2
D ! 10/5/84 11/25/85 10/22/85 12 Seven 3
E P 21883 1¥12/88 5/11/8G 5 Ore?2
. Four 3
F 12/17/85 : z Two 3
i
I One 1
G PoeseT 3 Two3
! Two 1
H 101388 k] Ore 3
i £29/89 H 3 Three 3
J &/18'90 82/91 7.19/81 . 7 Seven 3
« 5/2/91 1 One 1
One1
L e1ee2 3 One2
One3
M 71593 1 Cne3
N 71364 1 Cre3d
o o 10M18:95 11/19/26 18 8/26/56 5 One 2
Four 8
|
P 7116/9% 3 One?2
Two3
Q : 397 1 Cred

with increasing functionality since 1983 [2]. We use data
collected from the developer of the flight software of the
NASA Space Shuttle, as shown in Table 1, Part 1, and
Table 2, Part 2. These tables show Operational Increments
(OIs) of the NASA Space Shuitle: OIA... OIQ, covering the
period 1983-1997. We define an Ol as follows: a software
system comprised of modules and configured from a series
of builds to meet NASA Space Shuttle mission functional
requirements [16]. In Part 1, for each of the Ols, we show the
Release Date (the date of release by the contractor to
NASA), Total Post Delivery Failures, and Failure Severity
(decreasing in severity from “1” to “4”). In Part 2, we show
the maintenance change to the code in KLOC (source
language changes and additions) and the total test time of

the OL In addition, for those Ols with at least two failures,
we show the computation of MTTF, Failures/XLOC, and
Total Test Time/KLOC. KLOC is an indicator of main-
tenance actions, not functionality [8]. Increased function-
ality, as measured by the increase in the size of principal
functions loaded into mass memory, has averaged about
2 percent over the last 10 Ols. Therefore, if a stable process
were observed, it could not be attributed to decreasing
functionality. Also to be noted is that the software
developer is 2 CMM Level 5 organization that has
continually improved its process.

Because the flight software is run continuously, around
the clock, in simulation, test, or flight, Total Test Time refers
to continuous execution time from the time of release. For
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Characteristics of Maintained SoftwareTAA;:%sEszNASA Space Shuttle Releases (Part 2)
Totg:l
Qposirs | K00 | T | MITE | e | K08
({Days) Chenge Change
(Days)
A 80 1078 179.7 0.750 134.8
B 11.4 4026 409.6 0.877 359.3
C 59 4060 406.0 1.695 688.1
D 122 2307 192.3 0.984 189.1
E 8.8 1873 374.6 0.588 212.8
F 6.6 412 206.0 0.303 624
G 6.3 3077 1025.7 0.476 488.4
H 7.0 540 180.0 0.429 771
1 12.1 2632 877.3 0.248 2175
J 29.4 515 736 0.238 175
K 213 182 85
L 344 1337 4457 0.087 38.9
M 24.0 386 16.1
N 10.4 121 11.6
o} 153 344 638.8 0.327 225
P 7.3 272 80.7 0.411 373
Q 110 75 68

Ols where there was a sufficient sample size (i.e., Total Post
Delivery Failures)—OIA, OIB, OIC, OID, OIE, O], and
OIO—ve predicted software reliability. For these Ols, we
show Launch Date, Mission Duration, and Reliability
Prediction date (i.e., the date when we made a prediction).
Fortunately, for the safety of the crew and mission, there
have been few postdelivery failures. Unfortunately, from
the standpoint of prediction, there is a sparse set of
observed failures from which to estimate reliability model
parameters, particularly for recent Ols. Nevertheless, we
predict reliability prior to launch date for Ols with as few as
five failures spanning many months of maintenance and
testing. In the case of OIE, we predict reliability after launch
because no failures had occurred prior to launch to use in
the prediction model. Because of the scarcity of failure data,

we made predictions using all severity levels of failure data.

This turns out to be bencficial when making reliability risk

assessments using number of Remaining Failures. For
example, rather than specifying that the number of
predicted Remaining Failures must not exceed one severity
“1," the criterion could specify that the prediction not
exceed one failure of any fype—a more conservative
criterion [16].

As would be expected, the number of predelivery
failures is much greater than the number of postdelivery
failures because the software is not as mature from a
reliability standpoint. Thus, a way around the insufficient
sample size of recent Ols for reliability prediction is to use
predelivery failures for model fit and then use the fitted
model to predict postdelivery failures. However, we are not
sure that this approach is appropriate because the mutltiple
builds in which failures can occur and the test strategies
used to attempt to crash various pieces of code during the
predelivery process contrast sharply with the postdelivery
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environment of testing an integrated OI with operational
scenarios. Nevertheless, we are experimenting with this
approach in order to evaluate the prediction accuracy. The
results will be reported in a future paper.

5 RELATIONSHIP BETWEEN MAINTENANCE,
RELIABILITY, RiSK, AND TEST EFFORT
5.1 Metrics for Long-Term Analysis
We want our maintenance effort to result in increasing
reliability of software over a sequence of releases. A graph
of this relationship over calendar time and the accompany-
ing CM calculations indicate whether the long-term main-
tenance effort has been successful as it relates to reliability.
In order to measure whether this is the case, we use both
predicted and actual values of metrics. We predict
reliability in advance of deploying the software. If the
predictions are favorable, we have confidence that the risk
is acceptable to deploy the software. If the predictions are
unfavorable, we may decide to delay deployment and
perform additional inspection and testing. Another reason
for making predictions is to assess whether the maintenance
process is effective in improving reliability and to do it
sufficiently early during maintenance to improve the
maintenance process. In addition to making predictions,
we collected and analyzed historical reliability data. These
data show in retrospect whether maintenance actions were
successful in increasing reliability. In addition, the test
effort should not be disproportionate to the amount of code
that is changed and to the reliability that is achieved as a
result of maintenance acticns.

5.1.1 Mean Time to Faiiure

We want Mean Time to Failure (MTTF), as computed by (1),
to show an increasing trend across releases, indicating
increasing reliability.

Mean Time to Failure = Tota! Test Time/Total

Number of Failures During
Test

1)

o
w

‘i___~__

Tatal Fallures Per KLOC Change

.27

13.37

8ce

440

ayx)

810 F;lllurn i

Maun ¥Vim
a
a

¢ 3.2
M21lks Siace Release of First Of

Fig. 1. Mean time to failure across releases.

5.1.2 Total Failures

Similarly, we want Total Failures (and fauits), normalized
by KLOC Change in Code, as computed by (2), to show a
decreasing trend across releases, indicating that reliability
is increasing with respect to code changes.

Total Failures/KLOC = Total Number of Failures
During Test/KLOC Change {2}
in Code on the O

We plot (1) and (2) in Fig. 1 and Fig. 2, respectively,
against Release Time of OL This is the number of months
since the release of the O, using “0)” as the release time of
OIA. We identify the Ols at the bottom of the plots. Both of
these plots use actual values (i.e., historica! data). The CM
value for (1) is ~0.060 indicating small instability with
respect to MTTF and 0.087 for (2) indicating small stability
with respect to normalized Tota! Failures. The correspond-
ing standard deviations are 0.541 and 0.442. Large varia-
bility in CM is the case in this application due to the large
variability in functionality across releases. Furthermore, it is
not our objective to judge the process that is used in this
example. Rather, our purpose in showing these and
subsequent values of CM is to illustrate our model. We
use these plots and the CM to assess the long-term stability

17.8

Mentrs Since Release of FirstO |

olA B C

Fig. 2. Total failures per KLOC acioss releases.

D E 3 0
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of the maintenance process. We show example computa-
tions of CM for (1) and (2) in Table 3,

5.1.3 Tolal Test Time
We want Total Test Time, normalized by KLOC Change in
Code, as computed by (3), to show a decreasing trend
across releases, indicating that test effort is decreasing with
respect to code changes.

Total Test Time/KLOC = Total Test Time/KLOC
Change in Code on the OL

(3}

We plot (3} in Fig. 3 against Release Time of OI, using
actual values. The CM value for this plot is 0,116, with a
standard deviation of 0.626, indicating stability with respect
to efficiency of test effort. We use this plot and the CM to
assess whether testing is efficient with respect to the
amount of code that has been changed.

5.2 Reliability Predictions

5.2.1 Total Failures

Up to this point, we have used only actual data in the
analysis. Now we expand the analysis to use both
predictions and actual data but only for the seven Ols
where we could make predictions. Using the Schneidewind
Model {1], {9], [16], [17], [18] and the SMERFS software
reliability tool [4], we show prediction equations, using

30 day time intervals, and make predictions for OIA, OIB,
OIC, OID, OIE, Of], and OIO. This model or any other

applicable model may be used [1], (4].
To predict Total Failures in the range {1. o0] (i.e., failures
over the life of the software), we use (4):

Floc) =a/B+ X1

where the terms are defined as follows:

{4

s: starting time interval for using failures counts for
computing parameters o and §,

a: initial failure rate,

0: rate of change of failure rate, and

As-:: observed failure count in the range [1,s — 1]

Now, we predict Total Failures normalized by KLOC
Change in Code. We want predicted normalized Total
Failures to show a decreasing trend across releases. We
computed a CM value for this data of 0.115, with a
standard deviation of 0.271, indicating stability with respect
to predicted normalized Total Failures.

5.2.2 Remaining Failures
To predict Remaining Failures (¢} at time ¢, we use (5) [1],
[9], [17L: '

rit) = F{so) - X, (3)

TABLE 3
Example Computations of Change Metric (CM)
Operational MTTF Relative Total Relative
Increment (Days) Change Failures/KLOC Change
A 179.7 0.750

B 409.6 0.562 0.877 -0.145

C 406.0 -0.007 1.695 -0.483

D 192.3 -0.527 0.984 0.419

E 374.6 0.487 0.568 0.423

J 73.6 -0.805 0.238 0.581

0 68.8 -0.068 0.330 -0.272

CM -0.060 CM 0.087

700

N w & n @
o -3 o o 3
o o o =) =

Totrd Test Tine (DaysyXLOC Change

o
[

o
{

34 93 132 175 27€ 452 &1 4 72

S o o B e e o B

€18 $2° "53 £173 $132 a-af 2184 5187

Montrs Since Reecase of F *stC1
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Fig. 3. Tetal test time per KLOC across releases.
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Fig. 4. Reliability of maintained software—remaining failures normalized
by change to cods.

This is the predicted Total Failures over the life of the
software minus the observed failure count at time ¢.

We predict Remaining Failures, normalize them by
KLOC Change in Code, and compare them with normalized
actual Remaining Failures for seven Ols in Fig. 4. We
approximate Actual Remaining Failures at time ¢ by
subtracting the observed failure count at time ¢ from the
observed Total Failure count at time 7, where T >> t. The
reason for this approach is that we are approximating the
failure count over the life ‘ty 120f the software by using the
failure count at time 7. We want (5) and actual Remaining
Failures, normalized by KLOC Change in Code, to show a
decreasing trendover a sequence of releases. The CM values
for these plots are 0.107 and 0.277, respectively, indicating
stability with respect to Remaining Failures. The corre-
sponding standard deviations are 0.617 and 715.

5.2.3 Time to Next Failure

To predict the Time for the Next F, Failures to occur, when
the current time is ¢, we use (6) (15, [16], [17).

Telt) = [dogia/(a ~ B(Xs i+ F))/B) - (t—s —1)  (6)

The terms in Tr(t) have the following definitions:

t: Current time interval;

Xt Observed failure count in the range [s,t]; and

Fi: Given number of failures to occur after interval ¢
(e.g., one failure).

NO. 6, NOVEMBER/CECEMBER 1989
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Menths Since Release of First Ol
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Fig. 5. Reliability of maintained software—time to next fajlure.

We want (6) to show an increasing trend over a sequence
of releases. Predicted and actual values are plotted for six
Ols (OIO has no failures) in Fig. 5. The CM values for these
plots are —0.152 and —0.065, respectively, indicating slight
instability with respect to time to next failure. The
corresponding standard deviations are 0.693 and 0.630.

We predicted values of Total Failures, Remaining Fail-
ures, and Time to Next Failure as indicators of the risk of
operating software in the future: Is the predicted future
reliability of software an acceptable risk? The risk to the
mission may or may be not be acceptable. If the latter, we
take action to improve the maintained product or the
maintenance process. We use actual values to measure the
reliability of software and the risk of deploying it resulting
from maintenance actiens.

5.3 Summary

We summarize change metric values in Table 4. Overall
(i.e, average CM), the values indicate marginal stability. If
the majority of the results and the average CM were
negative, this would be an alert to investigate the cause. The
results could be caused by: 1) greater functionality and
complexity in the software over a sequence of releases, 2) a
maintenance process that needs to be improved, or 3) a
combination of these causes. :

TABLE 4
Change Metric Summary
Meuic Actual ; Predicted

Mean Time To Failure -0.060 i

Total Test Time per KLOC 0.116

Total Failures per KLOC 0.087 0.115
Remaining Failures per KLOC 0.277 0.107
Time to Next Faiture -0.0635 -0.152
Average 0.071
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Fig. 6. Total test time to achieve remaining failures.

6 METRICS FOR LONG-TERM AND SHORT-TERM
ANALYSIS

In addition to the long-term maintenance criteria, it is
desirable that the maintenance effort results in increasing
reliability within each release or Ol One way to evaluate
how well we achieve this goal is to predict and observe the
amount of test time that is required to reach a specified
number of Remaining Failures. In addition, we want the test
effort to be efficient in finding residual faults for a given OL
Furthermore, number of Remaining Failures serves as an
indicator of the risk involved in using the maintained
software (i.e., a high value of Remaining Failures portends a
significant number of residual faults in the code). In the
analysis that follows we use predictions and actual data for
a selected Ol to illustrate the process: OID.

6.1 Total Test Time Required for Specified
Remaining Failures

We predict the Total Test Timethat is required to achieve a

specified number of Remaining Failures, 7(t,), at time t,, by

(7) (11, (17]:
t. = flogle/(B[rEN /8 +(s-1) ()

We plot predicted and actual Total Test Time for OID in
Fig. 6 against given number of Remaining Failures. The two
plots have similar shapes and show the typical asymptotic
characteristic of reliability (e.g., Remaining Failures) vs.
Total Test Time. These plots indicate the possibility of big
gains in reliability in the early part of testing; eventually the
gains become marginal as testing continues. The figure also
shows how risk is reduced with a decrease in Remaining
Failures that is accomplished with increased testing.
Predicted values are used to gauge how much maintenance
test effort would be required to achieve desired reliability
goals and whether the predicted amount of Total Test Time
is technically and economically feasible. We use actual
values to judge whether the maintenance test effort has
been efficient in relation to the achieved reliability.
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6.2 Failure Rate

In the short term (i.e., within a release), we want the Failure
Rate (1/MTTF) of an Ol to decrease over an Ol’s Total Test
Time, indicating increasing reliability. Practically, we
would look for a decreasing trend, after an initial period
of instability (i.e., increasing rate as personnel learn how to
maintain new software). In addition, we use various shape
metrics, as defined previously, to see how quickly we can
achieve reliability growth with respect to test time
expended. Furthermore, Failure Rate is an indicator of the
risk involved in using the maintained software (ie. an
increasing failure rate indicates an increasing probability of
failure with increasing use of the software).

Failure Rate = Total Number of Failures
During Test/Total Test Time

(8)

We plot (8) for OID in Fig. 7 against Total Test Time
since the release of OID. Fig. 7 does show that short-term
stability is achieved (i.e., failure rate asymptotically
approaches zero with increasing Total Test Time). In
addition, this curve shows when the failure rate transitions
from unstable (positive Failure Rate) to stable (negative
Failure Rate). The figure also shows how risk is reduced
with decreasing Failure Rate as the maintenance process
stabilizes. Furthermore, in Fig. 8 we plot the rate of change
(i.e., slope) of the Failure Rate of Fig. 7. This curve shows
the percent of Total Test Time when the rate of change of
Failure Rate reaches its maximum negative value. We use
these plots to assess whether we have achieved short-term

TABLE 5
Percent of Total Test Time Required to Achieve Reliabifity Goals and Change Metrics (CM)
Operaticnal One Relative Stable Relative | Maximum Failure | Relative
Inczement Remaining Change Failure Rate Change Rate Change Change
Faiture (% Test 'Iime) (% Test Time}
(% Test Time) . - 5
A 77.08 j 76.99 76.99 i
B 611 0.168 64.11 .167 64,11 0.167
C 32.36 ~0.495 10.07 5.843 1007 0.843 _
D 34.56 0.617 12.70 -0.207 2276 -0.558
E 83.26 0.015 61.45 -0.793 6145 -0.63C
J 7688 0077 76.89 -0.201 7689 -0.201
o] - 46,49 0.395 100.00 0231 100.00 -0.23!
CM 0.089 CM -0.070 CcM -0.101
STDDEV 9.392 STD DEV 0.543 STD DEV 0.544
TABLE 6
Shuttle Operational Increment Functonality
Operational | Release KLOC Operational Increment Function
Increment Date Change
A 9/1/83 8.0 Redesign of Main Engin: Controller.
B 12/12/83 114 Payload Re-manifest Capabilities. 7
C 6/8/84 59 Crew Enhancenents. |
D 10/5/84 12.2 | Experimental Orbit Autopilot. Enhanced Ground Checkout.
P 2/15185 8.3 Western Test Range. Enhance Propetlant Dumps,
¥ 12/17/85 6.6 Centaur,
G 6/5/87 6.3 Post 51-L (Challenger) Safety Changes.
H 10/13/88 7.0 System Improvements.
i 6/29/89 12.1 Abort Fnhancements.
J 6/18/90 294 Extended Ianding Sites. Trans-Atlantic Abort Coce Ca-
Residency.
K 213 Redesigned Abort Sequencer.
52191 One Engine Auto Contingency Ahorts.
Hardware Changes for New Orbiter.
I 6/15/92 | 344 | Abort Enhuncements. -
M 7/15/93 24.0 On-Orbit Changes.
N 7/13/94 10.4 MIR Docking. On-Orbit Digital Autopilol Changes.
O L83 153 Three Engire Qut Auto Contingency.
p L 6/96 13 Performance Enhancements.
Q 3897 11.0 Single Global Positioning System.
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TABLE 7
Chronology of Process mprovements
Yearin which Process
Improvement Introduced Process Improvement
1976 Structured Flows
1977 Formal Software Inspections
1978 Formal Inspection Moderators
1980 Formalized Configuration Control
! 1981 Inspection Improvements
1982 Configuration Management Database

1983 | Oversight Analyses

i Build Automation :
1984 t Formalized Requirements Analysis i

Quarlerly Quality Reviews
1983 Prototyping
Inspection Improvements
1986 Formal Requirements Inspections
1987 Process Applied (0 Suppornt Soltware
_ Reconfiguration Cenification

1988 Reliability Modcling and Prediction
1989 Process Maturity Measurements
1990 Formalized Training
1992 Software Metrics }

stability in the maintenance process (i.e., whether Failure
Rate decreases asymptotically with increasing Total Test
Time). If we obtain contrary results, this would be an alert
to investigate whether this is caused by: 1) greater
functionality and complexity of the OI as it is being
maintained, 2) a maintenance process that needs to be
improved, or 3) a combination of these causes.

Another way of looking at failure rate with respect to
stability and risk is the annotated Failure Rate of OID
shown in Fig. 9, where we show both the actual and
predicted Failure Rates. We use (8) and (9) [1} to compute
the actual and predicted Failure Rates, respectively, where i
is a vector of time intervals for i > s in 9).

f(@) = a(EXP{~8(i — s + 1))) (9)

A 30-day interval has been found to be convenient as a
unit of NASA Space Shuttle test time because testing can
last for many months or even years. Thus, this is the unit
used in Fig. 9, where we show the following events in

intervals, where the predictions were made at 12.73
intervals:
Release time: 0 interval,
Launch time: 13.90 intervals,
Predicted time of maximum Failure Rate: 6.0 intervals,
Actual time of maximum Failure Rate: 7.43 intervals,
Predicted maximum Failure Rate: 0.5735 failures
per interval, and
Actual maximum Failure Rate: 0.5381 failures per interval.
In Fig. 9, stability is achieved after the maximum failure
rate occurs. This is at i=3s (i.e. i =6 intervals) for
predictions because (9) assumes a monotonically decreasing
failure rate, whereas the actual failure rate increases,
reaches a maximum at 7.43 intervals, and then decreases.
Once stability is achieved, risk decreases.
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6.3 Summary

In addition to analyzing short-term stability with these
metrics, we use them to analyze long-term stability across
releases. We show the results in Table 5 where the percent
of Total Test Time to achieve reliability growth goals is
tabulated for a set of Ols, using actual failure data, and the
Change Metrics are computed. Overall, the values of CM
indicate marginal instability, Interestingly, except for OID,
the maximum negative rate of change of failure rate occurs
when Failure Rate becomes stable, suggesting that max-
imum reliability growth occurs when the maintenance
process stabilizes.

7 SPACE SHUTTLE OPERATIONAL INCREMENT
FUNCTIONALITY AND PROCESS IMPROVEMENT

Table 6 shows the major functions of each Ol [12] along
with the Release Date and KLOC Change repeated from
Table 1 and Table 2. There is a not a one-for-one relation-
ship between KLOC Change and the functionality of the
change because, as stated earlier, KLOC is an indicator of
maintenance actions, not functionality. However, the soft-
ware developer states that there has been increasing
software functionality and complexity with each OI, in
some cases with less rather than more KLOC [8]. The focus
of the early OIs was on launch, orbit, and landing. Later
Ols, as indicated in Table 6, built upon this baseline
functionality to add greater functionality in the form of MIR
docking and the Global Positioning System (GPS), for
example. Table 7 shows the process improvements that
have been made over time on this ‘project, indicating
continuous process improvement across releases.

The stability analysis that was performed yielded mixed
results: About half are favorable and half are unfavorable.
Some variability in the results may be due to gaps in the data
caused by Ols that have experienced insufficient failures to
permitstatistical analysis. Also, we note that the values of CM
are marginal for both the favorable and unfavorable cases.
Although there is not pronounced stability neither is there
pronounced instability. If there were consistent and large
negative values of CM, it would be cause for alarm and would
suggest the need to perform a thorough review of the process.
This is not the case for the NASA Space Shuttle. We suspect,
but cannot prove, that in the absence of the process
improvements of Table 7 the CM values would look much
worse. It is very difficult to associate a specific product
improvement with a specific process improvement. A
controlled experiment would be necessary to hold all process
‘factors constant and observe the one factor of interest and its
influence on product quality. This is infeasible to do in
industrial organizations. However, we suggest that in the
aggregate a series of process improvements is beneficial for
product quality and that a set of CM values can serve to
highlight possible process problems.

8 Conclusions

As stated in the Introduction, the authors’ emphasis in this
paper was to propose a unified product and process
measurement model for both product evaluation and

process stability analysis. We were less interested in the
results of the NASA Space Shuttle stability analysis, which
was used to illustrate the model concepts. The authors
concluded, based on both predictive and retrospective use
of reliability, risk, and test metrics, that it is feasible to
measure and assess both product quality and the stability of
a maintenance process. The model is not domain specific.
Different organizations may obtain different numerical
results and trends than the ones we obtained for the NASA
Space Shuttle.
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Cost Framework for COTS Evaluation
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Cost as the Universal COTS Metric

We focus on {actors that the user should consider
when deciding whether to use COTS software. We take
the approach of using the common denominator cost.
This is done for two reasons: First, cost is obviously of
interest in making such decisions and second a single
metric — cost in dollars — can be used for evaluating the
pros and cons of using COTS. The reason is that various
software system attributes, like acquisition cost and
availability (i.e., the percentage of scheduled operating
time that the system is available for use), are non-
commensurate quantitics. That is, we cannot relate
quantitatively “a low acquisition cost” with “high
availability". These units are neither additive nor
multiplicative. However, if it were possible to translate
availability into either a cost gain or loss for COTS
software, we could operate on these metrics
mathematically. Naturally, in addition to cost. the user
application is key in making the decision. Thus one
could develop a matrix where one dimension is
application and the other dimension is the various cost
elements. We show how cost elements can be identified
and how cost comparisons can be made over the life of
the software. Obviously, identifying the costs would not
be casy. The user would have to do a lot of work to set
up the decision matrix but once it was constructed, it
would be a significant tool in the evaluation of COTS.
Furthermore, even if ail the required data cannot be
collected, having a framework that defines software
system attributes would serve as a user guide for factors
1o consider when making the decision about whether to
use COTS software or in-house developed software.

Certainly, different applications would have varying
degrees of relationships with the cost elements. For
example, flight control software would have a stronger
relationship with the cost of unavailability than a

spreadsheet application. Conversely, the latter would

have a stronger relationship with the cost of inadequacy
of tool features than the former. Due to the difficulty of
identifying specific COTS-related costs, our initial
approach is to identify cost elements on the ordinal scale.
Thus, the first version of the decision matrix would
involve ordinal scale metrics (i.e., the cost of

U.S. Govemment Work Not Protected by U.S. Copyright

unreliability is more important for flight control software
than for sprcadsheet applications). As the field of COTS
analysis matures and as additional data is collected about
the cost of using COTS, we will be able to refine our
metrics to the ratio scale (e.g., the cost of unreliability in
COTS systems is two times that in custom systems).

The cost elements for comparing COTS software
with in-house software are identified below. This list is
not exhaustive; its purpose is to illustrate the approach.
These elements apply whether we are comparing a
system comprised of all COTS components with all in-
house components or comparing only a subset of COTS
components with corresponding in-house components.
Explanatory comments are made where necessary. Mean
values are used for some quantities in the initial
framework. This is the case because it will be a challenge
to collect any data for some applications. Therefore, the
initial framework should not be overly complex.
Variance and statistical distribution information could be
included as enhancements if the initial framework proves
successful.

Cost Elements

C.(j) = Cost of acquiring COTS software in year j.

Ci(§) = Cost of developing in-house software in year j.
U.(j) = Cost of upgrading COTS software in year j.

U;(j) = Cost of upgrading in-house software in year j.
P(j) = Cost of personnel who use the software system in
year j. This quantity represents the value to the customer
of using the software system.

M.(j) = Cost per unit time of repairing a fault in COTS
software in year j. This is the cost of customer time

involved in resolving a problem with the vendor.

Mi(j) = Cost per unit time of repairing a fault in in-house
software in year j.
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R.(j) = Mean time of repairing a fault that causes a
failure in COTS software in year j. This is the average
time that the user spends in resolving a problem with the
vendor.

Ri(j) = Mean time of repairing a fault that causes a
failure in in-house software in year j.

T(j) = Scheduled operating time for the software system
in year j.

A(§) = Availability of software system that uses COTS
software in year j.

A;(j) = Availability of software system that uses software
developed in-house in year j.

These quantities are the fractions of T(j) that the software
system is available for use.

F.(j) = Failure rate of COTS software in year j.
‘Fi(j) = Failure rate of COTS software in year j.

These quantities are the number of failures per year that
-cause loss of productivity and availability of the software
system.

In some applications, some or all of the above
-quantities may be known or assumed to be constant over
-the life of the software system. Using the above cost
.elements, wc derive the equations for the annual costs of
the two systems and the difference in these costs. In the
.cost difference calculations that follow, a positive
:quantity is favorable to in-house development and a
'negative quantity is favorable to COTS.

Cost of Acquiring Software
Difference in annual cost = C(j) - Ci(j) ¢
‘Cost of Upgrading Software

Difference in annual cost = U.(j) - U;(j) 2)

Cost of Software being Unavailable for Use

Annual cost of COTS software being unavailable for use

=(1-A(N * P()).

Annual cost of the in-house software being unavailable
for use

= (1-AG) * PG)-
Difference in annual cost = P(j) * (Ai(j) - A()) 3)
Ct;st of Repairing Software

Average annual cost of repairing failed COTS software =
F() * TG) * R.() * M)

Average annual cost of repairing failed in-house software

= F(Q) * T * Ri§) * M.

Difference in annual cost =

TE) * (Fe() * ReG) * M) - ((FiQ) * RiGY * M) (4

Then, TC;, total difference in cost in year j, is the sum of
(1), (2), (3), and (4). Because there is the opportunity to
invest funds in alternate projects, costs in different years
are not equivalent (i.e., funds available today have more
value than an equal amount in the future because they
could be invested today and earn a future return).
Therefore, a stream of costs over the life of thc software
for n years must be discounted by k, the ratc of return on
alternate use of funds. Thus thc total discounted cost
differential between COTS software and in-house
software is:

TG/ +k)

In this initial formulation, we have not included
possible differences in functionality between the two
approaches. However, a reasonable assumption is that
COTS software would not be considered unless it could
provide minimum functionality to satisfy user
requirements. Thus, a typical decision for the user is
whether it is worth the additional life cycle costs to
develop an in-house software system with all the
desirable attributes.
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Abstract

We develop a new metric, Relative Critical Value De-
viation (RCVD), for classifying and predicting software
quality. The RCVD is based on the concept that the extent
to which a metric's value deviates Jrom its critical value,
normalized by the scale of the metric, indicates the degree
to which the item being measured does not conform to a
specified norm. For example, the deviation in body tem-
perature above 98.6 Fahrenheit degrees is a surrogate for
Jever. Similarly, the RCVD is a surrogate for the extent to
which the quality of software deviates Sfrom acceptable
norms (e.g., zero discrepancy reports). Early in develop-
ment, surrogate metrics are needed to make predictions of
quality before quality data are available. The RCVD can
be computed for a single metric or multiple metrics. Its
application is in assessing newly developed modules by
their quality in the absence of quality data. The RCVD is g
part of the larger framework of our measurement models
that include the use of Boolean Discriminant Functions
Jor classifying software quality. We demonstrate our con-
cepts using Space Shuttle flight software data.

Keywords: Quality classification and prediction, relative
critical value deviation metrics.

1. Introduction

Our goal is to provide models and processes to assist
software managers in answering the following questions:

How can I control the quality of my software?

* How can I predict the quality of my software?
How shall I prioritize my effort to achieve my quality
goals?

* How can I determine whether my quality goals are
being met?

®  How much will it cost to achieve my quality goals?

We develop quality control and prediction models that are
used to identify modules requiring priority attention dur-

Allen P. Nikora, Ph.D.

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109-8099
Email: Allen.P.Nikora@jpl.nasa.gov

ing development and maintenance. This is accomplished
in two activities: validation and application. During vali-
dation, we use a build of the software that has been devel-
oped as the source of data to compute Boolean Discrimi-
nant Functions (BDFs), Relative Critical Value Deviation
(RCVD) metrics, and regression equations that we use to
retrospectively classify and predict quality with specified
accuracy, by build and module. Using these functions and
equations during application, we classify and predict the
quality of new software that is being developed. This is
the quality we expect to achieve during maintenance.
During validation, both quality factor (e.g., discrepancy
reports of deviations between requirements and imple-
mentation) and software metrics (e.g., size, structural) data
are available; during application, only the latter are avail-
able. During validation, we construct Boolean discrimi-
nant functions (BDFs) comprised of a set of metrics and
their critical values (i.e., thresholds) [1, 2]. We select the
best BDF based on its ability to achieve the maximum
relative incremental quality/cost ratio. During application,
if at least one of the module's metrics has a value that ex-
ceeds its critical value, the module is identified as "high
priority" (i.e., low quality); otherwise, it is identified as
"low priority" (i.e., high quality). Our objective is to iden-
tify and correct quality problems during development, as
opposed to waiting until maintenance when the cost of
correction would be high. This process addresses the
question: "How can I control the quality of my software?"
Because BDFs only provide an acceptireject decision on
module quality, during validation, we also construct
RCVDs that are used to prioritize the effort applied to
rejected modules. In other words, an RCVD measures the
degree to which quality is low. This process addresses the
question: "How shall I prioritize my effort to achieve my
quality goals?

A RCVD is a derived metric, based on the normalized
deviation between a metric's value and its critical value. It
may be based on a single or multiple metrics. In our proc-
ess, we: 1) identify the critical values of the metrics and 2)
find the optimal BDF and RCVD based on their ability to
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satisfy both statistical and application criteria. Statistical
criteria refer to the ability to correctly classify the software
(i.e., classify high quality software as high quality and low
quality software as low quality). Application criteria refer
to the ability to achieve a high quality/cost ratio. This pro-
cess addresses the questions: "How can I determine
whether my quality goals are being met?" and "How much
will it cost to achieve my quality goals?"

RCVD values that exceeded the .80 percentile value
were able to account for two-thirds of the discrepancy
reports. To round out our approach, we use regression
equations to predict quality limits. This is desirable be-
cause, although BDFs and RCVDs control and predict
quality based on expected values, they are not capable of
predicting the range of quality values.

We show that it is important to perform a marginal
analysis (i.e., identification of the incremental contribution
of each metric to improving quality) when making a deci-
sion about how many metrics to include in the BDFs and
RCVDs. If many metrics are added to the set at once, the
contribution of individual metrics is obscured. Also, the
marginal analysis provides an effective rule for deciding
when to stop adding metrics.

The contributions of this research are the following: 1)
the Relative Critical Value Deviation (RCVD) is a new
metric for classifying and predicting software quality; 2)
the RCVDs in combination with the BDFs we previously
developed, allow the software manager to both control
quality and prioritize the effort required to achieve quality
goals; 3) BDFs, RCVDs, and regression equations are
integrated into a process to assist the software manager in
answering the questions posed in the introduction; and 4)
the data and most of the calculations are implemented in a
spreadsheet for easy transfer to practitioners.

1.1 Related Research

Our models are in the class of models concerned with
the classification, control, and prediction of quality. Other
researchers have had similar objectives but different ap-
proaches. Porter and Selby used classification trees to par-
tition multiple metric value space so that a sequence of
metrics and their critical values could be identified that
were associated with either high quality or low quality
software [3]. This technique is closely related to our ap-
proach of identifying a set of metrics and their critical
values that will satisfy quality and cost criteria. However,
we use statistical analysis to make the identification.

Briand et al. used logistic regression to classify mod-
ules as fault-prone or not fault-prone as a function of vari-
ous object oriented metrics [4]. In another example of
logistic regression, Khoshgoftaar and Allen used it to clas-
sify modules as fault-prone or not fault-prone as a function
of faults, requirements, performance, and documentation
software trouble report metrics [5]. While one of our ob-
Jectives is similar -- classify modules as either high quality
or low quality -- we derive from this binary classification

several predictive continuous quality and cost metrics,
including the RCVDs. These metrics are used to predict
the quality of software that will be delivered by develop-
ment to maintenance and the cost of achieving it.

Khoshgoftaar et al. used nonparametric discriminant
analysis in each iteration of a military system project to
predict fault-prone modules in the next iteration [6]. This
approach provided early indication of reliability and the
risk of implementing the next iteration. They conducted a
similar study involving a telecommunications application,
again using nonparametric discriminant analysis, to clas-
sify modules as either fault-prone or not fault-prone {7].
Our approach has the same objective but we produce
BDFs and RCVDs in terms of the original metrics as op-
posed to using density functions as discriminators.

Khoshgoftaar and Allen have also developed models
for ranking modules for reliability improvement according
to their degree of fault-proneness as opposed to whether
they are fault-prone or not [8]. They used Alberg Dia-
grams [9] that predict percentage of faults as a function of
percentage of modules by ordering modules in decreasing
order of faults and noting the cumulative number of faults
corresponding to various percentages of modules. Our
approach is similar but we accomplish the same objective
by sorting the modules by RCVD and finding its percen-
tile distribution and the corresponding drcount percentile
distribution, as we explain later.

2. Discriminative Power Model
2.1. Discriminative Power Validation

Using our metrics validation methodology [10, 11],
and the Space Shuttle flight software metrics and discrep-
ancy reports (DRs), we validate metrics with respect to the
quality factor drcount. This is the number of discrepancy
reports written against a module. In brief, this involves
conducting statistical tests to determine whether there is a
high degree of association between drcount and candidate
metrics. As shown in Figure 1, we validate metrics on
Build 1 (1397 modules) and apply them to Build 2 (846
modules) of the Space Shuttle flight software. Nikora and
Munson argue for the need of a measurement baseline
against which evolving systems may be compared [12].
Our baseline is Build 1 in Figure 1. The measurement re-
sults from Build 1 provide the data source for controlling
and predicting the quality delivered to maintenance and -
for comparing predicted with actual quality, once the latter
is known. Next, we define Discriminative Power.

2.1.1. Discriminative Power
Given the elements M; of a matrix of n modules and
m metrics (i.e., nm metric values), the elements MCj of a

vector of m metric critical values, the elements F, of a
vector of n quality factor values, and scalar FC of quality
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factor critical value, M, must be able to discriminate with
respect to F, for a specified FC, as shown below:

My>M; < F.>FC andM,SM; & F.<FC (1)

for i=1,2,...,n, and j=1,2,....m with specified o, where o is
the significance level of various statistical tests that are
used for estimating the degree to which a set of metrics
can correctly classify software quality. In other words, do
the indicated metric relations imply corresponding quality
factor relations in (1)? This criterion assesses whether MC,
has sufficient Discriminative Power to be capable of dis-
tinguishing a set of high quality modules from a set of low
quality modules. If so, we use the critical values in Quality
Control and Prediction described below. The validation
process is illustrated in Figure 1, where the critical values
MC; are produced during the Test phase of Build 1 by us-
ing the metrics M; from the Design phase and the quality
factor F, (e.g., drcount) available in the Test phase. (Dis-
crepancy Reports are written against the software
throughout development but they are not significantly
complete until the end of the Test phase during which
failures are observed). The desired quality level is set by
the choice of FC. The lower its value, the higher the
quality requirement; conversely, the higher its value, the
lower the requirement. A value of zero is appropriate for
safety-critical systems like the Space Shuttle.

2.2. Relative Critical Value Deviation (RCVD)
Metric

The RCVD is based on the concept that the extent to
which a metric's value deviates from its critical value,
normalized by the scale of the metric, is an indicator of the
degree to which the entity being measured does not con-
form to a specified norm. For example, the extent to which
body temperature exceeds 98.6 degrees Fahrenheit is an
indicator of the deviation from an established norm of
human health. Measurement involves using surrogates: the
deviation in temperature above 98.6 degrees is a surrogate
for fever. Similarly, the RCVD is a surrogate for the ex-
tent that software quality deviates from acceptable norms
(e.g., zero discrepancy reports). The concept of the RCVD
is shown in Figure 2, where the metric and quality scales
are shown, defined by the maximum (MX, and minimum
(MN)) metric boundaries and the maximum (FX) and
minimum (FN) quality boundaries, respectively. The the-
ory of the RCVD is given by the following relation:

RCVD ;=
(M- mC ) (x ,- N ) (F-FC Y(x —rv ) @

This means that the deviation of a metric from its
critical value, normalized by metric length, is related to
the degree of quality, as represented by the normalized
deviation of a quality factor (e.g., drcount) from its criti-
cal values: increasing positive deviations are related to
decreasing quality and increasing negative deviations are
related to increasing quality. It should not be inferred that

the relationship is linear or proportional; in fact, it is non-
linear. In the idealized diagram in Figure 2, the worst
quality corresponds to MX; and FX, the best quality to MN,
and FN, and acceptable quality to MC, and FC. Also, Fig-
ure 2 does not indicate the mathematical form of F.IfFN
is equal to zero and F, is set equal to zero, which is fre-
quently the case, F, and FX can be replaced by the sum of
the quality factor across a set of modules and the total
quality factor, respectively. This quantity is the proportion
of drcount computed across a set of modules. An RCVD
can also be comprised of multiple metrics by computing
their mean. Note that although it would not be valid to
compute the mean of metrics, the mean of RCVDs is an-
other story since these are normalized dimensionless
quantities. We experimented with both single and multiple
metric RCVDs, as we explain later.

2.3. Quality Control and Prediction

Quality control is the evaluation of modules with re-
spect to predetermined critical values of metrics. The pur-
pose of quality control is identify software that does not
meet quality requirements early in the development proc-
€ss so corrective action can be taken when the cost is low.
Quality control is applied during the Design phase of
Build 2 in Figure 1 to flag software for detailed inspection
that is below quality limits. The validated BDFs, com-
prised of the metrics M, and their critical values MC, that
are obtained from Build 1, are used to either accept or
reject the modules of Build 2 [1, 2]. At this point during
the development of Build 2, only the metric data M; and
MC, are available. The validated RCVDs are used to pri-
oritize the attention and effort devoted to modules that are -
rejected by the BDFs. Details are given later,

Quality predictions are used by the developer to antici-
pate rather than react to quality problems. Figure 1 shows
the metrics controlling and predicting the quality of soft-
ware that will be delivered to maintenance early in the
development of Build 2. Accompanied by rigorous in-
spection and test, this process will result in improved
quality of Build 2 and the software that is released to
maintenance. Once all of the quality factor data F, (e.g.,
drcount) have been collected for Build 2, at the end of the
Test phase as shown in Figure 1, the quality of Build 2
would be known. This, then, becomes the actual quality of
Build 2 in the maintained software. Regression equations
F=f(M;) are developed during the Test phase of Build 1
and applied to predicting quality limits during the Design
Phase of Build 2, as shown in Figure 1. This process ad-
dresses the question: "How can I predict the quality of my
software?"

3. Validation Methodology

We use a five stage process to select metrics and met-
ric functions for quality control and prediction: 1) com-
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pute critical values of the candidate metrics; 2) for the set
of candidate metrics and critical values, find the optimal
BDF based on statistical and application criteria; 3) apply
a stopping rule for adding metrics; 4) identify the best
RCVD for prioritizing quality assurance effort; and 5)
develop a regression equation that will accurately predict
quality limits (e.g., limits of drcount). Table 1 provides a
functional description of each stage. The five stages take
place during the Test Phase of Build 1 of Figure 1, once
all the quality factor data F, (e.g., drcount) are available.
The next sections describe the analysis for each stage.

3.1. Stage 1: Compute Critical Values

Critical values MC, are computed based on the Kol-
mogorov-Smimov (K-S) test [1, 2]. Table 1 shows the
metric definitions, critical values MC, and K-S distances
for six metrics of Build 1. These metrics were selected
based on their relatively high K-S distance compared to
other metrics that had been collected on the Space Shuttle.
The test statistic is the maximum vertical difference be-
tween the CDFs of two complementary sets of data (e.g.,
the CDFs of M; for drcount<FC and drcount>FC). If the
difference is 51gn1ﬁcant (i.e., a<.005), the value of M;
corresponding to maximum CDF difference is used for
MC.. This relationship is expressed in equation (3). Met-
rics are added to the BDF in order of their K-S Distance.

K -5 (MC)= 3
max{cpr (v, /(F. < o )-lepr (/> re )} ©

3.2. Stage 2: Form a Set of Boolean Discriminate
Functions (BDFs)

For each BDF identified in Stage 1 we use Table 2 to
further evaluate the ability of the functions to discriminate
high quality from low quality, from both statistical (e.g.,
misclassification rates) and application (e.g., ability of the
metric set to correctly classify low quality modules)
standpoints. In Table 2, MC, and FC classify modules into
one of four categories. The ’left column contains modules
where none of the metrics exceeds its critical value; this
condition is expressed with a Boolean AND function of
the metrics. This is the ACCEPT column, meaning that
accordmg to the classification decision made by the met-
rics, these modules have acceptable quality. The right col-
umn contains modules where at least one metric exceeds
its critical value; this condition is expressed by a Boolean
OR function of the metrics. This is the REJECT column,
meaning that according to the classification decision made
by the metrics, these modules have unacceptable quality.
The top row contains modules that are high quality; these
modules have a quality factor that does not exceed its
critical value (e.g., drcount=0). The bottom row contains
modules that are low quality; these modules have a quality
factor that exceeds its critical value (e.g., drcount>0).

Equation (4) gives the algorithms for making the cell
counts, using the BDFs of F, and M,; that are calculated
over the n modules for m metrics. This equation is an im-
plementation of the relation given in (1).

Cn= CQI:‘JINT FOR ((F; SFC) A (Mi SMCY)... A(M S MC)).. A (MimS MCh))

Cn= CO_I:J[NT FOR ((F: SFC) A ((Mi1 > MCY)-..V (M5 > MC))...V (Mim > MC)))
' )

c,1=co_1_";lm FOR ((F> FC) A (Mi S MC)-.. A (M S MC))-- A (Min  MCr))

sz=COiI:.:'NT FOR ((F;> FC) A((Mi1> MC))-..V (M; > MC))-..V (Min > MCr)))

for j=1,...,m, and where COUNT(i)=COUNT(i-1)+1 FOR
Boolean expression frue and COUNT(i)=COUNT(i-1),
otherwise; COUNT(0)=0. The counts (C,,, C,,, C,, and

C,,) correspond to the cells of Table 2, where row and
column totals are also shown: n, n,, n,, N,, and N,.

In addition to counting modules in Table 2, we must
also count the quality factor (e.g., drcount) that is incor-
rectly classified. This is shown as Remaining Factor, RF,
in the ACCEPT column. This is the quality factor count on
modules that should have been rejected. Also shown is
Total Factor, TF, the total quality factor count on all the
modules in the build. Table 2 and subsequent equations
show an example validation, where the combination of
metrics from Table 1 and their critical values for Build 1 is
prologue size (P) with a critical value of 63, statements
(8) with a critical value of 27, and eta2 (E2) with a critical
value of 45. This is the optimal BDF. Later we will ex-
plain how we arrived at this particular combination of
metrics as the optimal set. The results of the following
calculations for the optimal BDF are shown in Table 3.

3.2.1. Statistical Criteria

We validate a BDF statistically by demonstrating that
it partitions Table 2 so that C , and C,, are large relative to
C,, and C,. If this is the case, a large number of high
quality modules (e.g., modules with drcount=0) would
have M;;<MC; and would be correctly classified as high
quality. Similarly, a large number of low quality modules
(e.g., modules with drcount>0) would have M, >MC, and
would be correctly classified as low quality. We evaluate
partitioning ability using the misclassification rates.

3.2.2. Misclassification

We compute the degree of misclassification in Table
2 by noting that ideally C,=n=N, C,=0, C,=0,
C,=n,=N,. The extent to which this is not the case is esti-
mated by Type I misclassifications (i.e., the module has
Low Quality and the metrics "say" it has High Quality)
and Type 2 misclassifications (i.e., the module has High
Quality and the metrics "say" it has Low Quality). Thus,
we define the following measures of misclassification:
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Proportion of Type 1: p, = C.\/n 5
For the example, p, = (35/1397)*100 = 2.51% ©)

Proportion of Type 2: p, = C,,/n (6)
For the example, p, = (344/1397)*100 = 24.62%

3.2.3. Application Criteria

Because it is the performance of the metrics in the ap-
plication context that counts, we also validate metrics with
respect to the application criteria Quality and Inspection,
which are related to quality achieved and the cost to
achieve it, respectively [1, 2]. During the Design phase of
Build 2 in Figure 1, we predict that the quality computed
by equations (7)--(9) will be delivered to maintenance,
assuming that the modules rejected by the quality control
process are inspected and tested and that the problems that
are found are corrected. Furthermore, we predict that the
degree of inspection computed by equation (10) will be
required to achieve this quality. In addition to controlling
and predicting quality, equations (7)--(9) can be used to
address the question: "How can I determine whether my
quality goals are being met?" For example, if a quality
goal is <3% residual defects, the achievement of this goal
can be measured by RFP -- equation (9). Also, the degree
of rigorous inspection -- equation (10) can be used to ad-
dress the question: "How much will it cost to achieve my
quality goals?"

3.2.4. Quality

First, we estimate the metrics’ ability to correctly
classify quality, given that the quality is known to be low:
LQC: proportion of low quality (e.g., drcount > 0)
software correctly classified = C n/n ™

For the example, LQC=(541/576)*100=93.92%.

Second, we estimate the metrics’ ability to correctly
classify quality, given that the BDF has classified modules
as ACCEPT. This is done by summing quality factor in the
ACCEPT column in Table 2 to produce Remaining Factor,
RF (e.g., remaining drcount), given by equation (8).

RF = Z’AF; FOR ((F. > FC) A (M SMC))...A (8)

(M; S MCy)-- A (Min € MC.))

for j=1,..,m. This is the sum of F, (e.g., drcount) on mod-
ules incorrectly classified as high quality because, for
these modules, (Fi>FC)/\(MijSMCj).

We estimate the proportion of RF by equation (9),
where TF is the total F, for the build.

RFP=RF|TF )
For the example, from Table 2 there are 56 DRs on 35
modules that are incorrectly classified (i.e., RF=56). The
total number of DRs for the 1397 modules is 2579, There-
fore, RFP=(56/2579)*100=2.17%.

3.2.5. Inspection

Inspection is one of the costs of high quality. We are
interested in weighing inspection requirements (i.e., per-
cent of modules rejected and subjected to detailed inspec-
tion) against the quality that is achieved, for various
BDFs. We estimate inspection requirements by noting that
all modules in the REJECT column of Table 2 must be
inspected; this is the count C,,+C,,. Thus, the proportion of
modules that must be inspected is given by:

I=(Cn+Ca)/n (10)

For the example, I=((344+541)/1397)*100=63.35% and
the percentage accepted is 1-I = 36.65%.

3.2.6. Summary of Validation Results

Table 3 summarizes the results of the validation ex-
ample. The properties of dominance and concordance are
evident in these validation results and in other data we
have analyzed from the Space Shuttle. That is, a point is
reached in adding metrics where Discriminative Power is
not increased because: 1) the contribution of the dominant
metrics in correctly classifying quality has already taken
effect and 2) additional metrics essentially replicate the
classification results of the dominant metrics — the con-
cordance effect. This result is due to the property of the
BDF used as an OR function, causing a module to be re-
Jected if only one of its metrics exceeds its critical value.

3.3. Stage 3: Apply a Stopping Rule for Adding
Metrics

It is important to strike a balance between quality and
cost (i.e., between RFP and I). Thus we add metrics until
the ratio of the relative change in RFP to the relative
change in I is maximum, as given by the Quality Inspec-
tion Ratio in equation (11), where i refers to the previous
RFPand I

QIR = (ARFP|/RFP,)/(A1/1,) (1)

For the example, QIR(P,S-P,S, E2)=(( |.2.17-
295 I)/2.95)/((63.35-60.13)/60.13)=4.91. Therefore, we
stop adding metrics after efa2 (E2) has been added.

3.3.1. Comparison of BDF Validation with Applica-
tion Results

In order to compare validation with application re-
sults, we first show how BDF Table looks in the Design
phase of Build 2 in Figure 1, when only the metrics M,
and their critical values MC, are available. This is shown
in Table 4, where the "?" indicates that the quality factor
data F, are not available when the validated metrics are
used in the quality control function of Build 2. During the
Design phase of Build 2, modules are classified according
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to the criteria that have been described. Whereas 36.65%
(512/1397) and 63.35% (885/1397) modules were ac-
cepted and rejected, respectively, during Build 1 (see Ta-
ble 2), 26.95% (228/846) and 73.05 % (618/846) modules
were accepted and rejected, respectively, during Build 2
(see Table 4). The rejected modules would be given prior-
ity attention (i.e., subjected to rigorous inspection).

A comparison of the Validation (Build 1) with the Ap-
plication (Build 2) with respect to statistical and applica-
tion criteria are shown in Table 5. To have a basis for
comparison with the validation results, we computed the
values shown in Table 5 retrospectively (i.e., after Build 2
was far enough along to be able to collect all of the quality
factor data at the conclusion of the Test phase). The values
for Build 2 are the actual quality delivered to maintenance,
as shown during the Test phase of Figure 1. The results of
the two builds are comparable. Note that the same critical
values computed during Build 1 were used on Build 2.
This procedure is necessary because the quality factor data
that is used in the K-S test in Stage 1 is not available dur-
ing the Design Phase of Build 2 in Figure 1. This transfer-
ability of model parameters is key to our process because
the point of validation is to apply its results to other but
similar software when the quality factor data is not avail-
able for the latter. Also, we have found that to apply this
approach, Build 2 does not have to be a direct descendant
of Build 1. Builds 1 and 2 do not have this relationship.

3.4. Stage 4: Form a Set of Relative Critical
Value Metrics (RCVD)

Granularity of data is an issue that does not seem to
have been discussed much in the literature but one that we
have found to be of great importance in metrics analysis.
By granularity we refer to the level of data (e.g., module,
module sets, build) that will yield useful results when the
data are used in a model. This was an issue in our research
to develop an RCVD suitable for use as a second level
discriminant in controlling and predicting quality. By sec-
ond level we mean that the RCVD comes into play after
the optimal BDF has done its job of either accepting or
rejecting a module. Although the BDF is very useful, it
does not indicate the degree of quality (e.g., number of
DRs) on a rejected module or set of rejected modules. Our
original objective was to provide discrimination at the
module level (i.e., rank the drcount in modules by
RCVD). Due to the large number of modules with zero
DRs (58.77% and 50.59% for Build 1 and Build 2, re-
spectively) and the large variability of the data, this did
not prove feasible. However, by sorting the modules by
RCVD and finding its percentile distribution and the cor-
responding drcount percentile distribution, we were able
to identify key points in the plots of these distributions.
We call these points break points. These are points in the
percentile distributions where the slope of the percentile
curve starts to increase sharply. An example is shown in

Figure 3, where percentile drcount is plotted against per-
centile prologue size. A break point occurs at .80 percen-
tile (80%) on the X-axis. This corresponds to RCVD
(prologue size)=0.517. This value corresponds to a Y-axis
value of .35 (35%). Thus for values of RCVD greater than
0517, we estimate that the RCVD would identify 65% of
the drcount. Thus we see that a difference of only .20 per-
centile (1.00-.80) of the RCVD accounts for a difference
in .65 percentile (1.00-.35) of the drcount. In order to im-
plement this process, we validate function (12) for sets of
metrics during the Test Phase of Build 2, in Figure 1,
when the quality factor data F, are available. Then we ap-
ply function (12) during the Design Phase of Build 2,
when no quality factor date is available for Build 2.
v (M, > MC,)ARCVD, (12)

This means that in addition to rejecting modules -- the
function performed by the BDF -- there is further classifi-
cation performed by the RCVD. Any modules that evalu-
ate to true in (12), would receive special attention because
the likelihood is that they would contain multiple DRs.
This is illustrated in Table 6 where 65.37% of the drcount
is identified by RCVD (prologue size) in combination
with the BDF on Build 1, corresponding to a drcount den-
sity of 6.08. This is in contrast with a density of .80 on
modules where (12) does not evaluate to #ue and 2.85
when the BDF alone is used. Similar results are observed
for Build 2 in Table 6. These results indicate the quality
that would be delivered to maintenance unless action is
taken in inspection and test to correct the defects.

We experimented with using all six metrics of Table 1
in the RCVD. We used all six in order to have sufficient
data to make the computation feasible. RCVD was worse
than RCVD (prologue size), as can be seen in Table 6, in
terms of both percentage of drcount classified and drcount
density. Since RCVD (prologue size) is much easier to
compute, it was the preferred RCVD to apply to Build 2,
as shown in Table 6. This result is due to the dominance
and concordance properties of metrics mentioned earlier.
In addition, the result is due to the fact that prologue size
contains a thorough change history comprised of the fol-
lowing notations in the program listing: module; purpose
of the module; specification reference; change request;
discrepancy report; release; release date; revision level;
programmer; description of change; listing of statements
affected by the change; indication of whether a statement
is added, deleted, or changed; and program comments. We
use prologue size as a predictor of drcount in the aggre-
gate (i.e., the cumulative quantity of entries in the pro-
gram), not on a one-for-one basis of a change possibly
resulting in a DR.

A seemingly trivial but yet important aspect of this
stage of the analysis was demonstrating the usefulness of
sorting data to examine their distributions and the flexibil-
ity for doing this provided by a spreadsheet program.
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3.5. Stage 5: Identify Quality Limit Predictors

The final stage of the analysis involves identifying
regression equations for predicting the average and limits
of quality (e.g., drcount) of module sets, F=f(M, ), during
the Test Phase of Build 1, as shown in Figure 1. This pro-
cess is desirable because BDFs and RCVDs are not capa-
ble of predicting quality limits. During the Test phase of
Build 1, regression coefficients are estimated and the re-
sultant equation is applied, during the Design Phase of
Build 2, to predict the quality limits that would be deliv-
ered to maintenance unless action is taken to correct the
defects. As in the case of forming the RCVDs, granularity
of data was an issue. Again, because of the large number
of modules with zero drcount and the large variability of
the data, prediction at the individual module level was not
feasible. However, applying our earlier regression work
for the Space Shuttle [13], where we found that if we di-
vided the data into the appropriate number of frequency
classes (i.e., modules sets), according to Sturges' rule [14],
usable regression equations could be developed based on
the averages computed for the classes. In that work, we
only predicted average values. We now extend the ap-
proach to include predicting quality limits. We experi-
mented with various sets of predictor variables. The model
results are shown in Table 7. The equation we selected is
the exponential function using average statements (ave S):

avedrcount = exp(0.1137+0.0056697 * aveS) (13)

This equation was selected for application to Build 2 for
the following reasons: 1) lowest Mean Square Error
(MSE) in Table 7; 2) fair accuracy in predicting Build 1
drcount; 3) theoretical consideration that the rate of
change of drcount with module size would vary with
module size (property of exponential distribution); and the
relative ease of collecting size data. Although the F-ratio
and R’ are impressive for the linear function using nodes,
this equation has a relatively high MSE and the collection
of nodes requires the use of a metrics analyzer.

Prediction results are shown in Figures 4 -- 7. The
figures show the following for average drcount for sets of
100 modules (1 -- 100, 101 -- 200, etc.): Figure 4, actual
and predicted values for Build 1; Figure 5, actual and pre-
dicted limits for Build 1; Figure 6, actual and predicted
values for Build 2; and Figure 7, actual and predicted
limits for Build 2. Figure 7 shows that the prediction lim-
its bracket the actual values for Build 2. This is another
example of retrospective analysis: once the quality factor
data F, are available during the Test Phase of Build 2, Fig-
ure 1, the actual drcount can be compared with the predic-
tions. In the application of the prediction equation, the
software manager would compute the average size of sets
of modules and predict the drcount and the limits of
drcount for each module set, as shown in F igures 6 and 7,
respectively.

4. Summary and Conclusions

We developed a new metric, Relative Critical Value
Deviation (RCVD), for classifying and predicting software
quality. When the granularity of data was considered, the
RCVD proved to be a useful indicator of the degree to
which software quality deviates from a specified norm.
We discovered that the major application of the RCVD
was to prioritize the effort required to achieve quality
goals. At the outset we posed several questions that the
software manager wants answered concerning software
quality. We provided an integrated set of models based on
Boolean discriminant functions, RCVDs, and regression
equations to address these questions. We made a thorough
evaluation of two builds - one was used for validation and
the other for application - using a five-stage analysis ap-
proach. In the three areas of our modeling effort, the pre-
dictions for the application build were close to the actual
values. Based on these preliminary results and the fact that
we have done analysis on additional Space Shuttle data,
we feel that the models, not the specific numerical results,
are transferable to other organizations, if the models are
applied within and not across application domains. How-
ever, to increase our confidence in the results, in future
research we will examine several additional builds of the
Space Shuttle flight software. Finally, we found that mun-
dane aspects of the analysis like data sorting to discover
information about distributions of data and the use of
spreadsheet calculations significantly aided the analysis.
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Table 1: Kolmogorov-Smirnov Distance for drcount=0 vs. drcount>0
Validation: Build 1 (n=1397 modules)
Metric Definition Critical Distance o Rank
(symbol) (counts per module) Value
prologue size (P) change history line count in module listing 63 0.592 0.005 1
statements (S) executable statement count 27 0.505 0.005 2
eta2 (E2) unique operand count 45 0.472 0.005 3
loc (L) non-commented lines of code count 29 0.462 0.005 4
etal (E1) unique operator count 9 0.430 0.005 5
nodes (N) node count (in control graph) 17 0.427 0.005 6
Table 2: Boolean Discriminant Function: Validation (Build 1)
/\(M;jSMCj) V(M,PMCJ)
Pi<63AS;<27AE2;<45 P>63VS>27VE2;.45
High Quality C1=477 Ci;=344 =821
Fi<FC Type 2
drcount=0
Low Quality Cy=35 Cy=541 ny=576
F>FC Type 1
drcount>0
Ni=512 N.=885 n=1397
RF=56 TF=2579
ACCEPT REJECT
Table 3: Discriminative Power Validity Evaluation (Build 1, n=1397 modules)
Critical Values Statistical Criteria Application Criteria
Metric Set P S E2 L P1% P:% LQC % RFP % QIR 1%
P 63 6.23 15.10 84.90 6.13 - 50.11
P, S 63 27 3.22 22.12 92.19 2.95 2.59 60.13
P, S, E2 63 27 45 2.51 24.62 93.92 2.17 4.91 63.35
P,S,E2,L 63 27 45 29 2.00 29.35 95.14 1.78 2.16 68.58
K-S Distance 0592 | 0.505 | 0472 | 0462
P: prologue size, S: statements, E2; eta2, L: lines of code
Table 4: Boolean Discriminant Function: Application (Build 2)
/\(M,’jSMCj) V(MiPMCj)
Pi<63AS;<27AE2;<45 P>63VS>27VE2>45
High Quality ? Type 2
? ? ?
Low Quality Type |
? ? ? ?
N;=228 N=618 n=846
ACCEPT REJECT
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Table 5: Comparison of Validation (Build 1, n=1397 modules) with Application (Build 2, n=846 modules)

Critical Values Statistical Criteria Application Criteria
Metric Set P S E2 Py % P:% LQC % | RFP% QIR I%
" Validation P, S, E2 63 27 45 2.51 24.62 93.92 2.17 4.91 63.35
Application P, S, E2 63 27 45 3.07 26.71 93.78 2.69 9.11 73.05

P: prologue size, S: statements, E2: eta2

Table 6: Comparison of Relative Critical Value Deviation (RCVD) Discriminative Power

Build 1 (Validation) Build 2 (Application)
R—(—:—% (six metrics) RCVD (prologue size) RCVD (prologue size)
.80 Percentile RCVD .1026 .0517 0777
Value (Break Point)
BDF A RCVD ((P>63)V(S>2T)V(E2>45)) ((P>63)V(S>27)V(E2>45)) ((P>63)V(S>27)V(E2>45))
A(RCVD>.1026) ARCVD>.0517) ARCVD>.0777)
drcount identified 1400 1686 1002
(percent) (54.28) (65.37) (62.74)
modules with drcount 263 280 173
identified (percent) (18.83) (20.04) (20.45)
drcount density 5.32 6.02 5.79
(drcount/module)
drcount density for other 1.04 .80 .88
modules
BDF ((P>63)V(S>27)V(E2>45))
drcount density 2.85 2.51

1. RCVD (six metrics): mean of RCVDs of six metrics in Table 1
2. drcount identified: count of DRs on modules rejected by BDF A RCVD; percent of total DRs

3. modules with drcount identified: count of modules rejected by BDF A RCVD; percent of total modules

4. drcount density: drcount/module count
5. drcount density for other modules: modules other than those rejected by BDF A RCVD

Table 7: Regression Equation Summary for Predicting avedrcount
Predictor Type F R? MSE Mean Residual Predicted Actual Build
Variables Build drcount drcount
Build 1: Validation
aveS Exponential 56.94 851 0.702 .0000 2377 2579
aveN Linear 283.13 966 1.545 .0000 2241 2579
aveS, aveN Exponential 39.84 .899 0.754 .0000 2404 2579
Build 2: Application
aveS | _Exponential | 5694 | 851 | 0437 | | 1637 | 1597
S: statements, N: nodes, MSE: mean square error computed between predicted and actual drcount

44— Development ————p
Build 1: Validation Build 2: Application

Maintenance of Build 2

Design Test Design Test
M; F; M; —— Control & Predict —— ——p
RCVD; rRevDy” Quality
F=f(Mj) F=f(M;) Fi: Known Quality _—
M; : Metric j on Module i RCVDy Relative Critical Value Deviation
MC;  : Metricj Critical Value for Metric j on Module i
Fi : Quality Factor on Module i Fi=f(M;): Quality Limits Predictor

Figure 1. Measurement Process
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Keynote Talk
Investigation of the Risk to Software Reliability of Requirements Changes
The 1999 NASA Workshop on Risk Management, Morgantown, West Virginia, October 28-29,
1999, 13 pages.
Norman F. Schneidewind
BACKGROUND

While software design and code metrics have enjoyed some success as predictors of software
quality attributes such as reliability [KHO961, KH0962, LAN95, MUNY6. OHL96], the

measurement field is stuck at this level of achievement. If measurement is to advance to a higher

level, we must shift our attention to the front-end of the development process. because it is
during system conceptualization that errors in specifying requirements are inserted into the
process. A requirements change may induce ambiguity and uncertainty in the development
process that cause errors in implementing the changes. Subsequently, these errors propagate
through later phases of development and maintenance. These errors may result in significant
risks associated with implementing the requirements. For example, reliability risk (i.e., risk of
faults and failures induced by changes in requirements) may be incurred by deficiencies in the
process (e.g., lack of precision in requirements). Although requirements may be specified
correctly in terms of meeting user expectations, there could be significant risks associated with
their implementation. For example, correctly implementing user requirements could lead to
excessive system size and complexity with adverse effects on reliability or there could be a
demand for project resources that exceeds the available funds, time, and personnel skills.
Interestingly, there has been considerable discussion of project risk (e.g., the consequences of
cost overrun and schedule slippage) in the literature [BOH91 ] but not a corresponding attention
to reliability risk. :

Risk in the Webster's New Universal Unabridged Dictionary is defined as: "the chance of
injury; damage, or loss" [WEB79]. Some authors have extended the dictionary definition as
follows: "Risk Exposure=Probability of an Unsatisfactory Outcome*Loss if the Outcome is
Unsatisfactory" [BOH91]. Such a definition is frequently applied to the risks in managing
software projects such as budget and schedule slippage. In contrast, our application of the
dictionary definition pertains to the risk of executing the software of a system where there is the
chance of injury (e.g., crew injury or fatality), damage (e.g., destruction of the vehicle), or loss
(e.g., loss of the mission) if a serious software failure occurs during a mission. We use risk
factors to indicate the degree of risk associated with such an occurrence.

The generation of requirements is not a one-time activity. Indeed, changes to requirements
can occur during maintenance. When new software is developed or existing software is changed
in response to new and changed requirements, respectively, there is the potential to incur
reliability risks. Therefore, in assessing the effects of requirements on reliability, we should deal
with changes in requirements throughout the life cycle.
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In addition to the relationship between requirements and reliability. there are the
intermediate relationships between requirements and complexity and between complexity and
reliability. These relationships may interact to put the reliability of the software at risk because

OBJECTIVES AND EXPECTED SIGNIFICANCE

Objectives

Given the lack of emphasis in metrics research on the critical role that requirements play in
determining reliability, combined with our experience and interest in metrics and reliability, we
are motivated to investigate the following issues:

- What is the relationship between requirements attributes and reliability? That is, are there
requirements attributes that are strongly related to the occurrence of defects and failures in the
software?

- What is the relationship between requirements attributes and software attributes like complexity
and size? That is, are there requirements attributes that are strongly related to the complexity and
size of software?

- Is it feasible to use requirements attributes as predictors of reliability? That IS, can static
requirements change attributes like the size of the change be used to predict reliability in
execution (e.g., time to next failure, number of failures)?

- Are there requirements attributes that can discriminate between high and low reliability, thus
qualifying these attributes as predictors of reliability?

- Which requirements attributes pose the greatest risk to reliability?

An additional objective is to develop a framework that other researchers could use for the
following: 1) analyze the relationships between requirements changes, complexity, and
reliability, and 2) assess and predict reliability risk as a function of requirements changes.

Significance

This research is significant because the field of software engineering lacks the capability to
quantitatively assess and predict the effect of a requirements change on the reliability of the
software. Much of the research and literature in software metrics concerns the measurement of
code characteristics [NIK98]. This is satisfactory for evaluating product quality and process
effectiveness once the code is written. However, if organizations use measurement plans that are
limited to measuring code, they will be deficient in the following ways: incomplete, lack

coverage (e.g., no requirements analysis and design), and start too late in the process. For a
measurement plan to be effective, it must start with requirements and continue through to
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operation and maintenance. Since requirements characteristics directly affect code
characteristics and hence reliability, it is important to assess their impact on reliability when
requirements are specified.

RESEARCH PLAN

other words, we will investigate whether the following implications hold, where R represents
requirements, C represents complexity, and represents failure occurrence (ie., reliability):
AR=AC=AF. We include changes in size and documentation in changes in complexity.

By retrospectively analyzing the relationship between requirements and reliability, we will be
able to construct models that can predict reliability as a function of requirements changes. In

as the attribute of a requirement change that can induce reliability or project risk. Various
examples of risk factors are shown in the section Risk Factors. We propose to statistically
analyze specified risk factors to see in what way, if any, they are associated with reliability. In
particular, we want to identify those factors that have an adverse effect on reliability. In addition
to risk factors, we can also use the number of requirements change requests on modules (see

Discriminant Analysis

Using the null hypothesis, Hy: A given set of risk factors is not a discriminator of reliability
versus the alternate hypothesis H,: A given set of risk factors is a discriminator of reliability, we
will use categorical data analysis and discriminant analysis to test the hypothesis. A similar
hypothesis will be used to assess whether factors can serve as discriminators of complexity. We
will use the rich set of requirements, requirements risk factors, reliability, and metrics data we
have from the Space Shuttle to test our hypotheses. We will develop a discriminate function
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Trend Analysis

In our work on analyzing the relationship between product reliability and process stability,
we developed a generalized relative Change Metric (CM) that represents trend information (e.g.,
changes in reliability across releases) in a single metric [SCH98]. CM is independent of the
scales of the measured quantities. Although looking for a trend on a graph is useful, it is not a
precise way of measuring and comparing trends, particularly if the graph has peaks and valleys
and the measurements are made at discrete points in time. We wil] use this metric to measure
changes in risk factors, complexity, and reliability across releases or builds of the software and
compare them to see whether trends are as expected (i.e., increases in risk factors are
accompanied by increases in complexity and decreases in reliability). The following is an
example of computing CM for the reliability metric Jailures/KLOC:

1. Note the change in a metric from one release to the next (i.e., release j to release J+).

2.a. If the change is in the desirable direction (e.g., Failures/KLOC decrease), treat the change in
1 as positive.

b. If the change is in the undesirable direction (e.g., Failures/KLOC increase), treat the change
in | as negative.

4. Compute the average of the values obtained in 3, taking into account sign. This is the change
metric (CM). The CM is a quantity in the range —1, 1. A positive value indicates a favorable
trend; a negative value indicates an unfavorabje trend. The numeric value of CM indicates the
degree of stability or instability. The standard deviation of these values can also be computed.
The average of the CM for g set of metrics can be computed to obtain an overal] change metric.
An example of calculating CM for MTTF and Failures/KLOC is shown in Table 1 for various
Operational Increments (releases) of Shuttle software, where an Operational Increment (Ol is a
software system comprised of modules and configured from a series of builds to meet Shurtle
mission functional requirements. Figure ] shows the corresponding plot of Failures/KLOC
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Table 1: Example Computations of Change Metric (CM)

Operational MTTF Relative | Failures/KLOC I Relative |
Increment (Days) Change Change

A 179.7 0.750 '

B 409.6 0.562 0.877 f -0.145

C 406.0 -0.007 1.695 -0.483 *’

D 192.3 -0.527 0.984 0.419

E 374.6 0.487 0.568 0.423

J 73.6 -0.805 0.238 0.581

0] 68.8 -0.068 0.33 -0.272

CM -0.060 M 0.087

Reliability Prediction

If the discriminant analysis and trend analysis prove successful with respect to discriminating
reliability as a function of risk factors, we will use the results as scale factors on reliability
predictions. An example of this approach is shown in F igure 2, which is a plot of failure rate
versus test time for one of the Shuttle Ols. This plot shows a decreasing trend, after an initial
period of instability (i.e., increasing rate as personnel learn how to maintain new software).
Figure 2 shows that stability is achieved (i.e., failure rate asymptotically approaches zero with
increasing test time). There are two types of risks indicated on the diagram. One is the reduction
in risk with increased testing. We have done research work on this type of risk [KEL95]. The
other risk — a subject of this proposal ~ is represented by a family of failure rate curves (two
shown). The concept is that the lower curve (lower failure rate) would be associated with

RISK FACTORS

One of the software maintenance problems of the NASA Space Shuttle Flight Software
organization is to evaluate the risk of implementing requirements changes. These changes can
affect the reliability and maintainability of the software. To assess the risk of change, the
software development contractor uses a number of risk factors. which are described below. The
risk factors were identified by agreement between NASA and the development contractor based
on assumptions about the risk involved in making changes to the software. This formal process is
called a risk assessment. No requirements change is approved by the change control board
without an accompanying risk assessment. During risk assessment, the development contractor
will attempt to answer such questions as: “[Is this change highly complex relative to other
software changes that have been made on the Shuttle?” If this were the case. a high-risk value
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quantify. Although some of the following risk factors also have qualitative values assigned, there
are a number of quantitative factors, and many of the factors deal with the execution behavior of
the software (i.e., reliability), which is our research interest.

Shuttle Flight Software Requirements Change Risk Factors

If the answer to a yes/no question is "yes", it means this is a high-risk change with respect to the
given factor. If the answer to a question that requires an estimate is an anomalous value, it means
this is a high-risk change with respect to the given factor.

Complexity Factors

0 Qualitative assessment of complexity of change (e.g., very complex)

- Is this change highly complex relative to other software changes that have been made on the
Shuttle?

o Number of modifications or iterations on the proposed change
- How many times must the change be modified or presented to the Change Control Board
(CCB) before it is approved?

Size Factors

0 Number of lines of code affected by the change
- How many lines of code must be changed to implement the change?

0  Size of data and code areas affected by the change
- How many bytes of existing data and code are affected by the change?
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Criticality of Change Factors
0 Whether the software change is on a nominal or off-nomina] Program path (i.e., exception

condition)
- Will a change to an off-nominal program path affect the reliability of the software?

- Will a change to a critical phase of the mission (e.g., ascent and landing) affect the
reliability of the software?

Locality of Change Factors

0 Recent changes to the code in the area affected by the requirements change
- Will successive changes to the code in one area lead to non-maintainable code?

0 Newor existing code that is affected

- Will a change to new code (ie.. a change on top of a change) lead to non-maintainable

0 Number of System or hardware failures that would have to occur before the code that
implements the requirement would be executed
- Will the change be on a path where only a smal] number of system or hardware failures
would have to occur before the changed code s executed ?

Requirements Issues and Function Factors

0 Number and typeé of other requirements affected by the given requirement change

0 Possible conflicts among requirements changes (requirements 1ssues)
- Will this change conflict with other requirements changes (e.g., lead to conflicting
operational scenarios)

0  Number of principal software functions affected by the change
- HOW many major software functions will have to be changed to make the given change?

Performance F actors

0  Amount of memory required to implement the change
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- Will the change use memory to the extent that other functions will be not have sufficient
memory to operate effectively?

- 0 Effect on CPU performance

- Will the change use CPU cycles to the extent that other functions wil] not have sufficient
CPU capacity to Operate effectively?

Personnel Resources F actors
©  Number of inspections required to approve the change.

0 Manpower requirements required to implement the change
- Will the manpower required to implement the software change be significant?

- Will the manpower required to verify and validate the software change be significant?

Tools Factors

0 Any software tools creation or modification required to implement the change
- Will the implementation of the change require the development and testing of new tools?

0 Requirements specifications techniques (e.g., flow diagram, state chart, pseudo code, control
diagram).

- Will the requirements specification method be difficult to understand and translate into
code?

DATA SOURCES
We have access to several sets of data from the Space Shuttle of the following types:

- Pre-release and post release failure data from the Space Shuttle from 1983 to the present. An

Table 2
Failure Found On Days from Release Discrepancy Severity Failure Date Release  Module in
Operational Increment When Failure Occurred Report # Date Error
Q 75 110402 2 05-19-97 03-05-97 10

- Risk factors for the Shuttle Three Engine Out Auto Contingency and Single Global Positioning
System software. This software was released to NASA by the developer on 10/18/95 and 3/5/97,
respectively. An example of a partial set of risk factor data is shown in Table 3 (data provided
by US Alliance, Houston, Texas).
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Table 3
Change SLOC Complexity Criticality Number of Number of Number of  Number of Manpower
Request  Changed Rating of  of Change  Principal Modifications Requirements  Inspections Required to

Number Change Functions Of Change Issues Required Make
Affected Request Change
107734 1933 4 3 27 7 238 12 2093 MW

- Metrics data for 1400 Shuttle modules, each with 26 metrics. An example of a partial set of
metric data is shown in Table 4 (data provided by Prof. John Munson, University of Idaho).

Table 4
Module | Operator Operand | Statement Path Cycle Discrepancy Change Request
Count Count Count Count Count Report Count Count

10 I 3895 , 1957 ’ 606 ! 998 [ 4 [ 14 ' 16

|-

We will use the Shuttle data to test our hypothesis about the ability of risk factors to
discriminate between levels of reliability and complexity and the Jet Propulsion Laboratory X-
2000 system — the latest planetary vehicle. This project provides a rare opportunity to work with

a project as opposed to the usual situation of having to intervene in an on-going project. We plan
to instrument the software system for obtaining measurements throughout the development and

LONG-TERM GOALS

This research is another in the series of our software measurement projects that has included
software reliability modeling and prediction, metrics analysis, risk analysis, and maintenance
stability analysis [SCH98]. We have been involved in the development and application of
software reliability models for many years [SCH93, SCH92]. Our models, as is the case in
general in software reliability, use failure data as the driver. This approach has the advantage of
using a metric that represents the dynamic behavior of the software. However, this data is not
available until the test phase. Predictions at this phase are useful but it would be much more
useful to predict at an earlier phase — preferably during requirements analysis—when the cost of
error correction is relatively low:. Thus, there is great interest in the software reliability and
metrics field in using static attributes of software in reliability modeling and prediction.

Integrating Risk Analysis with Reliability Prediction
In the past, we have coupled reliability prediction with risk analysis, but the risk metrics we

developed pertained to the risk of the software not meeting remaining failures and time to next
failure goals [SCH973]. For example, we have used the Schneidewind software reliability model
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Assume that software reliability goals have been specified for a project in terms of remaining
Jailures r(t) and time to next failure Te(t, ) to be achieved once the software is deployed. Then

the criteria for achieving these goals, for a given test time tt,, €Xecution or elapsed time, are as
follows:

1) predicted remaining failures 1(t)<r.,where r.is a specified critical value , and
2) predicted time to next failure Tr(t)>ty,, where tm 1s mission duration.
Remaining Failures Risk Metric

Then we can formulate the normalized remaining failures risk merric as follows:
(r(t)-re)/re=(r(t)/ro)-1 1)
Equation (1) divides the risk space into three regions, as a function of test time: positive, zero,
and negative values corresponding to r(t,)>r,, I(t)=rc, and r(t)<r,, respectively. In terms of risk,
these regions correspond to critical, neutral, and desirable, respectively

Time to Next Failure Risk Metric

Similarly, we can formulate the time to next Jailure risk metric as follows:
(tm-Tr(t))/tm=1 ~(Te(t))/t 2)

Equation (2) divides the risk space into three regions, as a function of test time: positive, zero,
and negative values corresponding to Tr(t)<tm, Te(t)=ty, and Tr(t)>ty,. respectively. In terms of
risk, these regions correspond to critical, neutral, and desirable, respectively.

and complexity data become available, we will be able to observe whether the risk factors that
we validate on the Shuttle are applicable to the X-2000 for identifying and predicting reliability
risk. Also, we may discover additional risk factors on the X-2000 project. Lastly, we will be able
to determine whether the numerical results of reliability classification and prediction obtained on
the Shuttle scale to the X-2000.
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Summary and Conclusions

We show how software reliability predictions can increase confidence in the reliability of
safety critical software such as the NASA Space Shuttle Primary Avionics Software Svstem
(Shuttle flight software). This objective was achieved using a novel approach to integrate
software safety criteria, risk analysis, reliability prediction, and stopping rules for testing.
This approach is applicable to other safety critical software. We only cover the safety of the
software in a safety critical system. The hardware and human operator components of such
systems are not explicitly modeled nor are the hardware and operator induced software
failures. Our concern is with reducing the risk of all failures artributed to software. Thus, our
use of the word safery refers to software safety and not to system safety. By improving the
reliability of the software, where the reliability measurements and predictions are directly

related to mission and crew safety, we contribute to system safety.
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Remaining failures, maximum failures, total test time required to attain a given fraction of
remaining failures, and time to next failure are shown to be useful reliability measurements
and predictions for: 1) providing confidence that the software has achieved safety goals; 2)
rationalizing how long to test a piece of software; and 3) analyzing the risk of not achieving
remaining failure and time to next failure goals. Having predictions of the extent that the
software is not fault free (remaining failures) and whether it is likely to survive a mission
(time to next failure) provide criteria for assessing the risk of deploying the software.
Furthermore, fraction of remaining failures can be used as both an operational quality goal in
predicting fotal test time requirements and, conversely, as an indicator of operational quality
as a function of total test time expended.

Software reliability models provide one of several tools that software managers o'f the
Shuttle flight software are using to provide confidence that the software meets required safety
goals. Other tools are inspections, softwafe reviews, testing, change control boards, and
perhaps most important -- experience and judgement.

1. Introduction

We propose that two categories of software reliability measurements (1.e., observed failure
data used for model parameter estimation) and predictions (1.e., forecasts of future reliability
using the parameterized model) be used in combination to assisz in assuring the safety of the
software in safety critical systems -like the Shuttle flight software. The two categories are: 1)

measurements and predictions that are associated with residual software faults and failures,
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and 2) measurements and predictions that are associated with the ability of the software to
survive a mission without experiencing a serious failure. In the first category are: remaining
Jailures, maximum failures, Jraction of remaining failures, and total test time required to
attain a given number or fraction of remaining failures. In the second category are: time to
next failure and total test time required to attain a given time to next failure. In addition, we
define the risk associated with not attaining the required remainin g failures and time to next
Jailure. Lastly, we derive a quantity from the fraction of remaining failures that we call
operational quality.

The benefits of predicting these quantities are: 1) they provide confidence that the
- software has achieved safety goals, and 2) they provide a means of rationalizing how long to
test a piece of software (stopping rule). Having predictions of the extent that the software is
not fault free (remaining failures) and its ability to survive a mission (time to next failure) are
meaningful for assessing the risk of deploying safety critical software. In addition, with this
type of information a software manager can determine whether more testing is warranted or
whether the software is sufficiently tested to allow its release or unrestricted use. These
predictions, in combination with other methods of assurance, such as inspections, defect
prevention, project contrél boards, process assessment, and fault tracking, provide a
quantitative basis for achieving safety and reliability goals [3].

Riskin the Webster's New Universal Unabridged Dictionary is defined as: "the chance of
injury; damage, or loss" [19]. Some authors have extended the dictionary definition as
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follows: "Risk Exposure=Probability of an Unsatisfactory Outcome*Loss if the Outcome is
Unsatisfactory" [2]. Such a definition is frequently applied to the risks in managing software
projects such as budget and schedule slippage. In contrast, our application of the dictionary
definition pertains to the risk of executing the software of a safety critical system where there
is the chance. of injury (e.g., astronaut injury or fatality), damage (e.g., destruction of the
Shuttle), or loss (e.g., loss of the mission) if a serious software failure occurs during a
mission. We have developed risk criterion metrics to quantify the degree of risk associated
with such an occurrence.

Lockheed-Martin, the primary contractor on the Shuttle flight software project, is
experimenting with a promising algorithm which involves the use of the Schnez‘dewz’nd
Software Reliability Model to compute a parameter: fiaction of remaining failures as a
function of the archived failure history during test and operation [10]. Our prediction
methodology uses this parameter and othér reliability quantities to provide bounds on zozal
test time, remaining failures, operational quality, and time to next failure that are necessary to
meet Shuttle safety requirements. We also show that there is a pronounced asymptotic
characteristic to the total test time and operational quality curves that indicate the possibility
of big gains in reliability as testing continues; eventually the gains become marginal as testing
continues. We conclude that the prediction methodology is feasible for the Shuttle and other

safety critical systems.
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We only cover the safety of the software in a safety critical system. The hardware and
human operator components of such Systems are not explicitly modeled nor are the hardware
and operator induced software failures. However, in practice, these hardware-software
interface and human operator-software interface failures may be very difficult to identify as
such; these failures may be recorded as software failures. Our concern is with reducing the
risk of all failures attributed to software. Thus, our use of the word safety refers to software
safety and not to system safety.

Although remaining failures has been discussed in general as a type of software reliability
prediction [13], and various stopping rules for testing have been proposed, based on costs of
testing and releasing software [4, 5, 8, 17), failure intensity [12], and testability [18], our
approach is novel because we integrate software safety criteria, risk analysis, reliability
prediction, and a stopping rule for testing. For a system like the Shuttle, where human lives
are at risk, we cannot use economic or time-to-market criteria to determine when to deploy
the software. Although failure intensity has proven useful for allocating test effort and
determining when to stop testing in commercial systems [12], this criterion is not directly
related to software safety. In a safety critical system, the prediction of remaining failures and
identification of the faults which cause them is more relevant to ensuring safety than the trend
of failure intensity over time. The latent faults must be fouﬁd and removed through additional
testing, inspection, or other means, if the safety of the mission is not to be Jjeopardized.

Furthermore, as we will show, remainin g failures, along with time to next failure, can be used
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as risk criteria. It is not clear how failure intensity could be a meaningful safety criterion.

Because festability attempts to quantify the probability of failure, if the code is faulty [18],
this criterion has a relationship with reliability if we know that the code is faulty. However in
the Shuttle and other safety critical software, our purpose is to predict whether the code is
faulty. For safety critical software, we must use reliability measurements and predictions to
assess whether safety and mission goals are likely to be achieved.

We first define two criteria for software safety. Then we apply these criteria to risk
analysis of safety criticél software, using the Shuztle flight softWare as an example. Next, we
define and provide brief derivations for a variety of prediction equations that are used in
reliability prediction and risk analysis; included is the relationship between time to next
Jailure and reduction in remaining failures. This is followed by an explanation of the
principal of optimal selection of failure data that involves selecting only the most relevant set
of failure data for reliability prediction, with the result of producing more accurate
predictions than would be the case if the entire set of data were used. Then we show hoW the
prediction equations can be used to integrate testing with reliability and quality. An example
is shown of how the risk analysis and reliability predictions can be used to make decisions
about whether the software is safe to deploy. Lastly we show validation results for a variety
of predictions.

Acronyms

OIA4: Shuttle operational increment A
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OIB: Shuttle operational increment B

OIC: Shuttle operational increment C

OID: Shuttle operational increment D

Assumptions [1]:

1. Faults that cause failures are removed.

2. As more failures occur and more faults are corrected, remainin g failures will be reduced.

3. The remaining failures are "zero" for those OI's that were executed for extremely long
times (years) with no additional failure reports; correspondingly, for these OI's, maximum
failures equals total observed failures.

4. The number of failures detected in one interval is independent of the failure count in
another.

5. Only "new" failures are counted (i.e., failures that are repeated as a consequence of not
correcting a fault are not counted).

orrecting a fault are not counted).

Definitions

0 Interval: an integer time unit t of constant length defined by t-1<t<t+1, where t>0; failures

are counted in intervals (e.g., one failure occurred in interval 4)[1,7].

o Number of Intervals: the number of contiguous integer time units t of constant length

represented by a positive real number (e.g., the predicted time to next failure is 3.87

intervals).
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0 Operational Increment (Ol): a software system comprised of modules and configured from
a series of builds to meet Shuttle mission functional requirements.
0 Time: Continuous CPU execution time over an interval range.
Severity Codes:

1. Severe Vehicle or Crew Performance Implications.

2. Affects Ability to Complete Mission (Not a safety issue).

3. Workaround Available, Minimal Effect on Procedures.

4. Insignificant (Paperwork, etc.).

5. Not Visible to User,

Nomenclature

0 Predicted at time t: a prediction made in the interval t.

0 Safety: software safety; not system safety.

Notation

a failure rate at the beginning of interval s

B negative of derivative of failure rate divided by failure rate (i.e., relative failure
rate)

F(i) predicted failure count in the range [1,i]; used in computing MSE,

Fj; observed failure count during interval j since interval 1; used in computing

MSE+
F(t) predicted failure count in the range [1, t]
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F(t,t)

F()

given number of failures to occur after interval t; used in predicting Tg(t)
predicted failure count in the range [t;,t,]

predicted failure count in the range [1,«]; maximum failures over the life of the
software

current interval

next interval >1 where F;i>0

maximum j<t where F i>0.

MSEr  mean square error criterion for selecting s for failure count predictions

MSE,
MSE;
p(t)
Q)

1(t)
r(t;)

AI‘(TF,t)

RCM r(t,)

mean square error criterion for selecting s for remaining failure predictions

mean square error criterion for selecting s for time to next failure predictions

fraction of remaining failures predicted at time t

operational quality predicted at time t; the complement of p(t); the degree to
which software is free of remaining faults (failures)

critical value of remaining failures; used in computing RCM r(t,)

remaining failures predicted at time t

remaining failures predicted at total test time t;

reduction in remaining failures that would be achieved if the software were
executed for a time Ty, predicted at time t

risk criterion metric for remaining failures at total test time t;

RCM Te(t) risk criterion metric for time to next failure at total test time t,
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starting interval for using observed failure data in parameter estimation

optimal starting interval for using observed failure data, as determined by MSE

criterion

cumulative time in the range [1,t]; last interval of observed failure data; current

interval

mission duration (end time-start time); used in computing RCM T(t,)
total test time (bbserved or predicted) |

time to next failure(s) predicted at time t

time to next failure predicted at total test time t,

time to next N failures that would be achieved if remaining failures were

reduced by ar, predicted at time t

time since interval i to observe number of failures Fjj during interval j; used in

computing MSEr
observed failure count in the range [1,i]
observed failure count in the range [1,s-1]
observed failure count in the range [s,t]
observed failure count in the range [s,t;]
observed failure count in the range [1,t]
observed failure count in the range [1,t;]

2. Criteria for Safety

223




If we define our safety goal as the reduction of failures that would cause loss of life, loss
of mission, or abort of mission to an acceptable level of risk [11], then for software to be
ready to deploy, after having been tested for total time t, we must satisfy the following
criteria:

1) predicted remaining failures r(t,)<r., (1)

where . is a specified critical value , and

2) predicted time to next failure Te(t)>tm, | (2)

where t,, is mission duration.

For systems that are tested and operated continuously like the Shuttle, t,, Te(t,), and t,, are
measured in execution time. Note that, as with any methodology for assuring software safety,
we cannot guarantee safety. Rather, with these criteria, we seek to reduce the risk of
deploying the software to an acceptable level.

2.1 Remaining Failures Criterion

Using assumpﬁon 1 that the faults that cause failures are removed (this is the case for the
Shuttle), criterion 1 specifies that the residual failures and faults must be reduced to a level
where the risk of operating the software is acceptable. As a practical matter, we suggest re=1.
That is, the goal would be to reduce the expected remaining failures to less than one before
deploying the software. The reason for this choice is that one or more remaining failures
would constitute unacceptable risk for safety critical systems. This is the threshold used by

the Shuitle software managers. One way to specify r. is by failure severity level (e.g., severity
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level 1 for life threatening failures). Another way, which imposes a more demanding safety
requirement, is to specify that r. represents all severity levels. For example, r(t)<1 would
mean that r(t;) must be less than one failure, independent of severity level.

If we predict r(t;)>r., we would continue to test for a total time t,">t, that is predicted to
achieve r(t')<r, using assumption 2 that we will experience more failures and correct more
faults so that the remaining failures will be reduced by the quantity r(t))-r(t,). If the developer
does not have the resources to satisfy the criterion or is unable to satisfy the criterion through
additional testing, the risk of deploying the software prematurely should be assessed (see the
next sectiqn). We know from Dijkstra's dictum that we cannot demonstrate the absence of
faults [6]; howéver We can reduce the risk of failures occurring to an acceptable level, as
represented by r.. This scenario is shown in Figure 1. In case 4 we predict r(t)<r. and the
mission begins at t.. In case B we predict r(t;)>r. and postpone the mission until we test for
total time t' and predict 1(t/)<r. In both cases criterion 2) must also be satisfied for the
mission to begin.

2.2 Time to Next Failure Criterion

Criterion 2 specifies that the software must survive for a time greater than the duration of
the mission. If we predict Te(t) <tm, we would continue to test for a total time t,">t, that is
predicted to achieve Te(t,")>tm, using assumption 2 that we will experience more failures and
correct more faults so that the time to next failure will be increased by the quantity T(t,")-

Tr(ty). Again, if it is infeasible for the developer to satisfy the criterion for lack of resources or
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failure to achieve test objectives, the risk of deploying the software prematurely should be
assessed (see the next section). This scenario is shown in Figure 2. In case A we predict
Te(t)>t, and the mission begins at t,. In case B we predict Tr(t;)<t,, and postpone the mission
until we test for total time t," and predict Tr(t")>ty, In both cases criterion 1) must also be
satisfied for the mission to begin. If neither criterion is satisfied, we test for a time which is

the greater of t,' or t,".

3. Risk Assessment

The amount of fotal test time t, can be considered a measure of the degree to which
software reliability goals have been achieved. This is particularly the case for systems like the
Shuttle where the software is subjected to continuous and rigorous testing for several years in
multiple facilities, using a variety of operational and training scenarios (e.g., by Lockheed-
Martin in Houston, by NASA in Houston for astronaut training, and by NASA at Cape
Kennedy). If we view t; as an input to a risk reduction process, and r(t;) and Tg(t;) as the
outputs, we can portray the process as shown in Figure 3, where r. and t,, are shown as "risk
criteria levels" of safety that contro] the process. While we recognize that total test time is not
the only consideration in developing test strategies and that there are other important factors,
like the consequences for reliability and cost, in selecting test cases [20], nevertheless, for the
foregoing reasons, total test time has been found to be strongly positively correlated with
reliability growth for the Shuttle [15].

3.1 Remaining Failures
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We can formulate the mean value of the risk criterion metric (RCM) for criterion 1 as
follows:

RCM r(t)= (r(t,)-re)/re=(r(t)/ro)-1 (3)

We plot equation (3) in Figure 4 as a function of t; for r.=1, where positive, zero, and
negative values correspond to r(t,)>r,, r(t)=r., and r(t)<r,, respectively. In Figure 4, these
values correspond to the following regions: UNSAFE (i.e., above the X-axis predicted
remaining failures are greater than the "safe" value); NEUTRAL (i.e., onthe X-axis predicted
remaining failures equal to the "safe" value); and SAFE (1.e., below the X-axis predicted
remaining failures are less than the "safe" value).

This graph is for the Shuttle operational increment OID. In this example we see that at
approximately t=57 the risk transitions from the UNS4FE fegion to the SAFE region.

3.2 Time to Next Failure

Similarly, we can’formulate the mean value of the risk criterion metric (RCM) for
criterion 2 as follows:
RCM Tr(t)=(tm-Te(t))/te=1-(Te(t))/t, 4)
We plot equation (4) in Figure 5 as a function of t, for t»=8 days (a typical mission duration
time for this OI), where positive, zero, and negative risk corresponds to Te(t)<tm, Te(t)=tm,
and Tr(t)>ty, respectively. In Figure 5, these values correspond to the following regions:
UNSAFE (i.e., above the X-axis predicted time to next failure is less than the "safe" value);

NEUTRAL (i.e., on the X-axis predicted time to next failure is equal to the "safe" value); and
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SAFE (i.e., below the X-axis predicted time to next failure is greater than the "safe" value).
This graph is for the Shuttle operational increment OIC In this example we see that at

all values of t,

the RCM is in

the SAFE

region.

4. Approach to Prediction

In order to support our safety goal and to assess the risk of deploying the software, we
make various reliability and quality predictions. In addition, we use these predictions to
perform tradeoff analysis between reliability and total test time. Thus, our approach is touse a
software reliability model to predict the following: 1) maximum failures, remaining failures,
and operational quality (as defined in the next section); 2) time to next failure (beyond the
last observed failure); 3) total test time necessary to achieve required levels of remaining
Jailures (fault) level, operational quality, and time to next failure; and 4) tradeoffs between
increases in levels of reliability and quality with increases in testing.

S. Prediction Equations

The following prediction equations are based on the Schneidewind Software Reliability
Model [1, 14, 15, 16], one of the four models recommended in the 4744 Recommended

Practice for Software Reliability[1].These equations use assumptions 4-7 in the Introduction.

228




We derive these equations in the next section. . We apply them to analyze the reliability of the
Shuttle flight software. All predictions are mean values.

Because the flight software is run continuously, around the clock, in simulation, test, or
flight, "time" refers to continuous execution time and fozal test time refers to execution time
that is used for testing. Failure count intervals are equal to 30 days of continuous execution
time. This interval is long because the Shuttle software is tested for several years; a 30 day
interval length is a convenient for recording failures for software that is tested this long.

In the following equations, the parameter o is the failure rate at the beginning of interval
s; the parameter P is the negative of derivative of failure rate divided by failure rate (i.e.,
relative failure rate); t is the last interval of observed failure data; s is the starting interval for
using observed failure data in parameter estimation that will result in the best estimates of a
and B and the most accurate predictions [14]; X,.1 is the observed failure count in the range
[1,s-1]; X, is the observed failure count in the range [s,t]; and X=X, +X.. These failure
count interval relationships are shown in Figure 6; also shown is fotal test time t,. Failures are
counted against operational increments (Ols). Data from four Shuttle OI's, designated OI4,
OIB, OIC, and OID are used in this analysis.

5.1 Cumulative Failures

When maximum likelihood estimates are obtained for the parameters o and 3, with s as the
starting interval for using observed failure data, we obtain the predicted failure count in the
range [s,t]
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Fs =(o/B)[1-exp(-B((t-s+1)))] (5)
Furthermore, if we add X1, the observed failure count in the range [1,s-1], we obtain
predicted failure count in the range [1, t]:

F(O=(o/B)[1-exp(-B((t-s+1)+X, (6)

3.2 Failures in an Interval Range

If we set t=t, and subtract Xu=Xs.1+X 1, the observed failure count in the range [1,t,],
from equation (6 ), we obtain the predicted failure count in the range [t;,t>]:

F(t,t2)=(o/B)[1-exp(-B((t-s+1)))]-X,,0; (7)

5.3 Maximum Failures

If we let t-e in equation (6 ), we obtain the predicted failure count in the range [1,]
(i.e., maximum failures over the life of the software):
F(e)=a/B+X,., (3)

3.4 Remaining Failures

To obtain predicted remaining failures r(t) at time t, we subtract X=Xs11tX,, from
equation (8):
r(t)=~(o/B)-X=F(=)-X, ©)

I(t) can also be expressed as a function of total test time t, by substituting equation (5) into
equation (9) and setting t=t,: |
r(t))=(a/B)(exp-B[t-(s-1)]) (10)

5.5 Fraction of Remaining Failures:
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If we divide equation (9) by equation (8), we obtain fraction of remaining failures
predictéd at time t:
p(t)=r(t)/F (=) (11)

5.6 Operational Quality

The operational quality of software is the complement of p(t). It is the degree to which
software is free of remaining faults (failures), using assumption 1 that the faults that cause
failures are removed. It is predicted at time t as follows:

Q(t)=1-p(t) (12)

5.7 Total Test Time to Achieve Specified Remaining Failures

The predicted fotal test time required to achieve a specified number of remaining failures

t. = [log[o/(B[r(t)DI)/B+(s1)

at t,, r(t,), is obtained from equation (10) by solving for t,:

5.8 Time to Next Failure

By substituting t;=t+Tg(t) in equation (7), setting t, =t, defining F=F(t,t+T¢),and solving

for Te(t), we obtain the predicted time for the next F, failures to occur, when the current time

Tr (1) = [(logfo /(aB(Xs. + F D)/ BY(ts+1)

for (a/B) > (X +F.)

1St:

The terms in Tg(t) have the following definitions: 231




t: Current interval;
X1l Observed failure count in the range [s,t]; and
F.: Given number of failures to occur after interval t.

We consider equations (5)-(11) and (14) to be predictors of reliability that are related to
safety; equation (13) represents the predicted total test time required to achieve stated safety
goals. If a quality requirement is stated in terms of fraction of remaining failures, the
definition of Q as Operational Quality, equation (12), is consistent with the IEEE definition
of quality: the degree to which a System, component, or process meets specified requirements
[9]. For example, if a reliability specification requires that software is to have no more that
5% remaining failures (i.e., p=.05, Q=.95) after testing for a tbtal of t; intervals, then a
predicted Q of .90 would indicate the degree to which the software meets specified
requirements.

3.9 Relating Time to Next N Failures and Remaining Failures Predictions

Although we have shown the risk analysis and prediction equations for remaining failures
and time to next failure separately, it would be useful to combine these quantities in one
equation so that we can predict the effect on one quantity for a given change in the other. In
particular we want to predict, at time t, the time to the next N failures, Ty(ar,t), that would be
achieved if remaining failures were reduced by ar. We use assumption I that N=ar; that is,
faults that cause failures are removed. When N=1, we have the familiar time o next failure.
When N>1, Te(ar,t) is interpreted as cumulative execution time for the N failures to occur.
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Conversely, we want to predict, at time t, the reduction in remaining failures, ar(T,t), that
would be achieved if the software were executed for a time Tr. This relationship is derived by
using equation (10) and setting ar=r(t,)-r(t,), t=t;+at, and t, =t, and solving for at=Tg(ar,t):
Te(ar,y=(-1/B)[log[ 1-((Bar/o)(exp(B(t-s+1))))]] (15)
for ((Bar/a)(exp(B(t-s+1))))<I.
Equation (15 ) is analogous to equation (14). Also, ar in equation (15 ) is analogous to F, in
equation (14), if we use assumption I that the faults that cause the F, failures are removed,
with a corresponding reduction in remaining failures. The two equations produce the same
result for the same parameter values. Equation (15 ) has the advantage of being a simpler
computation because it does not require the observed data vector Xst, Which is used in
equation (14). Also, equation (15 ) is convenient to use for trading off time to next N failures
against reduction in remaining failures, and the effort and the total test time implicit in
making the reductions.

We can invert equation (15 ) to solve for the reduction in remaining failures that would be
achieved by executing the software for a time Ty.
ar(Te,y=(a/B)[exp(-B(t-s+1))][1-exp(-B(Tr))] (16)

6. Criterion for Optimally Selecting Failure Data

The first step in identifying the optimal value of s (s") is to estimate the parameters o and [3
for each value of s in the range [1,t] where convergence can be obtained [1, 14, 16]. Then the

Mean Square Error (MSE) criterion is used to select s’, the failure count interval that
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corresponds to the minimum MSE between predicted and actual failure counts (MSEy), time
to next failure (MSE7), or remaining failures (MSE,), depending on the type of prediction.
The first two were reported in [14]. In this paper we develop MSE,. MSE, is also the criterion
for maximum failures (F(=)) and total test time (t;) because the two are functionally related to
remaining failures (1(t)); see equations 9 and 13. We also show MSE+ because it is used in
predictions that involve time fo next Jailure: Tg(t), Tr(ar,t), and ar(Tr,t). Once o, B, and s are
estimated from observed counts of failures, the foregoing predictions can be made. The
reason MSE is used to evaluate which triple (., B, s) is best in the range [1,t] is that research
has shown that because the product and process change over the life of the software, old
failure data (i.e., s=1) are not as representative of the current state of the product and process
as the more recent failure data (le.,s>1) [14]. The optimal values of s (s*) that were used in
the risk analysis and prediction examples are shown in Tables 1-4.

The Statistical Modeling and Estimation of Reliability Functions Jfor Software (SMERFS)
[7] is used for all predictions except t,, Te(ar,t), and ar(Tg,t), which are not implemented in
SMEREFS.

6.1 Mean Square Error Criterion for Remaining Failures

Although we can never know whether additional failures may occur, nevertheless we can
form the difference between two equations for r(t): (9), which is a function of predicted
maximum failures and the observed failures, and (10), which is a function of fotal test time,

and apply the MSE criterion. This yields the following Mean Square Error (MSE,) criterion
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Y FOXT
MSE, =%
ts+1

for number of remainingfaih_tres:
where F(i) is the predicted failure count in the range [1, i/ and X is the observed failure count
in the range [1,i].

6.2 Mean Square Error Criterion for Time to N ext Failure(s)

The Mean Square Error (MSEr) criterion for time to next Jfailure(s), which was derived in

2[[log[oc Mou-B(Xsi + Fy)))/ Blis+ 1)]-T; T
MSE; ==
(J-s)

for (o/B) > (Xsi+Fy)

[14], is given by equation (18):

The terms in MSEy have the following definitions:

1: Current interval;

j: Next interval j>i where Fi>0;

Xsi:Observed failure count in the range [s,i];

Fy: Observed failure count during interval J since interval i;

T;j: Time since i to observe number of failures Fj during j (i.e., Ti=j-1)

t.  The last interval of observed failure data; and
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J: Maximum j<t where F;;>0.

7. Relating Testing to Reliability and Qualitv

7.1 Predicting Total Test Time and Remaining Failures

We use equation (8) to predict maximum Jailures (F(=)=11.76) for Shuttle OIA. Using
given values of p and equation (11) and setting t=t,,, we predict 1(t,) for each value of p. The
values of 1(t;) are the predictions of remaining failures after the Ol has been executed for rotal
fest time t.. Then we use the values of r(t,) and equation (13) to predict corresponding values
of t,. The results are shown in F 1gure 7, where 1(t,) and t, are plotted against p for OJ4. Note
that required total test time t, rises very rapidly at small values of p and 1(t;). Also note that the
maximum value of p on the plot corresponds to t=18 and that smaller values correspond to
Juture values of t, (1.e., t>18).

7.2 Predicting Operational Quality

Equation (12) is a useful measure of the operational quality of software because it
méasures the degree to which faults have been removed from the software (using assumption
1 that the faults that cause failures are removed), relative to predicted maximum Jailures. We
call this type of quality operational (1.e., based on executing the software) to distinguish it
from static quality (e.g., based on the complexity of the software).

Using given values of p and equations (11) and (12)and setting t=t,, we compute r(t,) and
O, respectively. The values of 1(t) are then used in equation (13) to compute t.. The

corresponding values of Q and t, are plotted in F igure 8 as Operational Quality and Total Test

236




Time, respectively for OI4. We again observe the asymptotic nature of the testing relationship
in the great amount of testing required to achieve high levels of quality.

7.3 Predicting Time to Next Failure

First, we show the actual time to next Jailure in Figure 9 for OI4 on the solid curve that
has occurred in the execution time range t=[1,18], where one failure occurred at t=4, 14, and
18, and two failures occurred at t=8 and 10. All failures were Severity Level 3: "Workaround
available; minimal effect on procedures". The way to read the graph is as follows: If we take a
given failure, Failure 1, for example, it occurs at t=4; therefore, at t=1 the time to next
Jailure=3 (4-1); at t=2 the time to next Jailure=2 (4-2); at t=4 Failure 1 occurs, so the time to
next failure=4 (8-4) now refers to Failure 2, etc. Next, using equation (14), we predict the
time to next failure T(18) to be 4 (3.87 rounded) on the dashed curve. Based on the
foregoing, this prediction indicates we should continue testing if T¢(18)=3.87<t,, (mission
duration).

1.4 Predicting Tradeoffs of Time to Next N Failures with Reduced Remaining Failures

By using equation (15 ), we can predict time o next N Jfailures, Tg(ar,t), as a function of
reduction in remaining failures, ar. This is shown in F igure 10 for OI4 , where, for example,
with ar=1, we predict Te(1,18)=3.87 (i.e., a reduction in remaining failures of 1 corrésponds
to achieving a time to next failure of 3.87 intervals from the current interval 18). Conversely,
by using equation (16 ), we predict reduction in remaining failures, ar(Tg,t), as a function of

time to next failure, Tr. This is shown in Figure 11 for OI4, where, for example, with
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T¢=3.87, we predict ar(3.87,18)=1 (i.e., executing OIA for a time to next failure of 3.87
intervals from the current interval 18 corresponds to achieving a rediction in remaining
Jailures of 1). We provide further elaboration of these graphs in the next section.

8. Making Safety Decisions

In making the decision about how long to test, t,, we apply our safety criteria and risk
assessment approach. We use Table 1 to illustrate the process. For t=18 (when the last failure
occurred on OIA4), r.=1, and t,.=8 days (.267 intervals), we show remaining failures, RCM for
remaining failures, time to next failure, RCM for time to next failure, and operational quality.
These results indicate that safety criterion 2 is satisfied but not criterion I (1.e., UNSAFE with
respect to remaining failures); also operational quality is low.

By looking at Figure 10 and Table 1, we see that if we reduce remaining failures r(18) by
1 from 4.76 to 3.76 (non-integer values are possible because the predictions are mean values),
the predicted time to next failure that would be achieved is Te(18)=3.87 intervals. These
predictions satisfy criterion 2 (e, Tp(18)=3.87>t,=.267) but not criterion I (1e.,
1(18)=4.76>r.=1). Note also in Figure 10 and Table 1 that Jraction of remaining failures p=1-
Q=.40 at r(18)=4.76. Now, if we continue testing for a total time t=52 Intervals, as shown in
Figure 10 and Table 1, and reduce remaining failures from 4.76 to .60, the predicted time to
next 4.16 failures that would be achieved is 33.94 (34, rounded) intervals. This corresponds to
t=18+34=>52 intervals. That is, if we test for an additional 34 intervals, starting at interval 18,

we would expect to experience 4.16 failures. These predictions now satisfy criterion 1
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because r(52)=.60<r=1. Note also in F igure 10 and Table | that fraction of remaining
Jailures p=1-Q=.05 at r(52)=.60. Using the converse of the relationship in Figure 10, provides
another perspective, as shown in Figure 11, where we see that if we continue to test-for an
additional Tr=34 intervals, starting at interval 18, the predicted reduction in remaining
Jailures that would be achieved is 4.16 or 1(52)=.60.

Lastly, Figure 12 shows the Launch Decision, relevant to the Shuttle, (or, generically, the
Deployment Decision), where remaining failures are plotted against total test time for OIA.
With these results in hand, the software manager can decide whether to deploy the software
depending on factors such as predicted remaining failures, as shown in Figure 12, along with
considering other factors such as the trend in reported faults over time, inspection results, etc..

If testing were to continue until t=52, the predictions in F igure 12 and Table 1 would be
obtained. These results show that criterion I is now satisfied (i.e., SAFE) and operational
quality is high. We also see from Figure 12 that at this value of t;, further increases in t,
would not result in a significant increase in reliability and safety. Also note that at t;=52 it is
not feasible to make a prediction of T¢(52) because the predicted remaining failures is less

than one.
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Table 1

Safety Criteria Assessment

OIA
r=1 to=
days
t, a B rt) | RCM | s” | Te(t) | RCM | ©Q
r(t) TF(tt)
18 | .534 | .061 476 | 376 | 9 | 3.87 | -13.49 | 60
52 | .534 | .061 60 | -40 | 9 * * 95

30 day Total Test Time and Time to Next Failure Intervals.

* Cannot predict because predicted Remaining Failures is less than one.

9.1 Predictions

9. Summary of Predictions and Validation

Table 2 shows a summary of remaining and maximum failure predictions compared with

actual failure data, where available, for OI4, OIB, OIC, and OID. Because we do not know

the actual remaining and maximum failures, we use assumption 3: remaining failures are

"zero" for those OI's (B, C, and D) that were executed for extremely long times (years) with
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no additional failure reports; correspondingly, for these OI's, we use assumption 3 that

maximum failures equals total observed failures.

Table 2

Predicted Remaining and Maximum Failures versus Actuals

t; s a B r(t) Actual r F() Actual F
OIA | 18] 9 | 534 | .061| 4.76 oA 11.76 74
OIB |20 ] 1 J169].131| 095 1P 12.95 135
OIC | 20| 7 |137].126 | 1.87 2¢ 12.87 13¢
OID | 18| 6 | .7381.051 | 7.36 4P 17.36 14°

30 day Total Test Time Intervals

Time of last recorded failure:

A. No additional failures have been reported after 17.17 intervals.
B. The last recorded failure occurred at 63.67 intervals.

C. The last recorded failure occurred at 43.80 intervals.

D. The last recorded failure occurred at 65.03 intervals.

Table 3 shows a summary of rotal test time and time to next Jfailure predictions compared
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with actual execution time data, where available, for OI4, OIB, 0IC , and OID.

Table 3

Predicted Total Test Time and Time to Next Failure versus Actuals

s | t(r=1) | Actualt, | ¢ s" | Te(t) | Actual Ty
OIA | 9 | 4359 ? 181 9 | 39 ?
OIB | 1 * 63.67 20 | * * 43.67
OIC | 7 | 24098 27.07 20 | 5 | 42 7.63
OID | 6 | 56.84 58.27 18| 5 | 64 6.2

30 day Total Test Time and Time to Next Failure Intervals.
* Cannot predict because predicted Remaining Failures is less than one.
Additional Predictions for OID:
The following are additional predictions of total test time for OID that are not listed
in Table 3: ty(r=2)=43.35, Actual=45.17; t(r=3)=35.47, Actual=23.70.
Table 4 shows a summary of the predictions of time to next failure for a given reduction in
remaining failures of 1 and the predictions of reduction in remaining failures for given time
1o next failure compared with actual execution time and failure data, where available, for O/4,

OIB, OIC, and OID.

Table 4
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Predicted Tradeoffs of Time to Next Failure with Reduced Remaining Failures

versus Actuals

t s* a B Tr(ar=Lt) | Actual (Tgt) ar(Tg,t) | Actual
OIA| 18 | 9 | .534 ] .061 3.87 ? 3.87 1.00 ?
OIB| 20 ] 1 | 1.69 ] .131 * 43.67 | 43.67 95 1.0
OIC| 20} 5 | 1.34 ] .096 4.16 7.63 7.63 1.58 1.0
OID| 18} 5 | 1.61} .137 6.35 6.20 6.20 .99 1.0

30 day Total Test Time and Time to Next Failure Intervals.

* Cannot predict because predicted Remaining Failures is less than one.

9.2 Validation

A total of 18 predictions were made across Tables 2, 3, and 4, where there was an actual

value to compare: three 1(t), four F(eo), four t,, two Tg(t), two Tr(ar,t), and three ar(Tg,t). The

mean relative error (mean of (actual-predicted)/actual) of prediction is 22.92% and the

standard deviation is 27.61%. In making these predictions we note both the sparsity of post-

delivery failures and the extremely long test times for Shuttle flight software, as summarized

in Table 5. See the Appendix for a listing of the failure data. Despite the fact that the

Schneidewind Software Reliability Model uses optimal selection of failure data, and thus less

than the full set of data, there must be a minimum number of failures to start the parameter
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estimation process, understanding that the model will then select the optimal value of s(s").

Thus, given the sparsity of the data, all failures in Table 5 were used in parameter estimation,

regardless of their severity.

assessment is produced if all categories of failures are included in the analysis.

Table 5

Failure Distribution by Severity Code

Severity 2 Severity 3 Severity 4 | Maximum Total
Failures Failures Failures Failures Test Time
OI1A 0 7 0 7 18
OIB 5 8 0 13 64
OIC 3 6 2 137 44
OID 6 8 0 14 66

30 day Total Test Time Intervals.

* Unknown Severity for two failures

There are no post-delivery Severity 1 or 5 fail

Furthermore, as described earlier, a more conservative risk

ures in the above Operational Increments.
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APPENDIX

Observed Failure Counts

(Interval i = 30 days execution time)

i oIa oIB oIc o1D
1 0 1 0 0
2 0 1 0 0
3 0 1 0 0
4 1 2 0 0
5 0 1 0 3
6 0 0 2 1
7 0 0 1 0
8 2 2 3 1
9 0 1 1 0
10 2 0 0 1
11 0 2 0 1
12 © 0 0 0
13 0 1 1 2
14 1 0 1 0
15 0 0 C 0
16 0 0 0 0
17 © 0 1 0
18 1 0 0 1
19 0 0 0]
20 0 1 0
21 0 0 0
22 0 0 0
23 0 0 0
24 0 0 1
25 0 0 0
26 0 0 0
27 0 0 0
28 0 1 0
29 0 0 0
30 0 0 0
31-63 0
64 1
31-43 0
44 1
31-45 0
46 1
47-58 0
59 1
60-65 0
66 1
Totals:
7 13 13 14
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We develop a quality control and prediction modz! for improving the quality of software
delivered by development to maintenance. This modzl identifies modules that require priority
attention during development and maintenance by using Boolean discriminant functions. The
model also predicts during development the quality that will be delivered to maintenance by
using both point and confidence interval estimates of quality. We show that it is important
to perform a marginal analysis when making a decision about how many metrics to include
in a discriminant function. If many metrics are addz=d at once. the contribution of individual
matrics is obscured. Also, the marginal analysis provides an effective rule for deciding when
to stop adding metrics. We also show that certain metrics are dominant in their effects on
classifying quality and that additional metrics are not needed to increase the accuracy of
classification. Related to this property of dominance is the property of concordance. which is
the degree to which a set of metrics produces the szma result in classifving software quality.
A high value of concordance implies that additicnal metrics will not make a significant
contribution to accurately classifying quality; hence. these metrics are redundant. Data from
the Space Shuttle flight software are used to illustraze the model process.

1. Introduction

A key problem in maintenance is to identify problems in the software during
development before it reaches maintenance. To this end, we develop a quality control
and prediction model that is used to identify modules that require priority attention dur-
ing development and maintenance. This is accomplished in two activities: validation
and application. Both activities occur during software development. Validation is an
activity that is required in order to identify metrics that can identify low quality soft-
ware that requires corrective action. Application is an activity during which validated
metrics are applied to control and predict software quality. During validation, we use
a build of the software that has been developed as the source of data to compute a
discriminant function (i.e., a statistical method that is used to classify software quality)
that we use to retrospectively classify and predict quality with specified accuracy, by
build and module. Using this discriminant function during application. we classify and
predict the quality of new software that is being developed. We make both point and
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confidence interval estimates of quality. This is the quality we expect to experience
during maintenance.

During validation, both quality factor (e.g., discrepancy reports of deviations
between requirements and implementation) and software metrics (e.g.. size. structural)
data are available; during application. only the latter are available. During validation,
we construct Boolean discriminant functions (BDFs) comprised of a set of metrics
and their critical values (i.e., thresholds). A BDF is a Boolean function consisting of
AND and OR operators, module metric values, and metric critical values that is used
to classify the quality of software. A metric critical value is a value in the range of
the metric, estimated by using the inverse of the Kolmogorov—Smirnov distance (to
be explained) that provides a threshold between two levels (¢.g., high and low) of
the quality of the software. We select the best BDF based on its ability to achieve
the maximum relative incremental quality/cost ratio. During application, if at least
one of the module’s metrics has a value that exceeds its critical value, the module
is identified as “high priority” (i.e., low quality): otherwise, it is identified as “low
priority” (i.e., high quality). Our objective is to identify and correct quality problems
during development so that a high quality product can be delivered to maintenance, as
opposed to waiting until maintenance when the cost of comrection would be high.

We use nonparametric statistical methods to: (1) identify the critical values of
the metrics and (2) find the optimal BDF based on its ability to satisfy both sratistical
and application criteria. Statistical criteria refer to the ability to correctly classify the
software (i.e., classify high quality software as high quality and low quality software
as low quality). Application criteria refer to the ability to achieve a high quality/cost
ratio. A BDF compares a module’s metric value with the metric’s critical value,
for a set of metrics, in classifying the quality of the software. The BDFs provide
good accuracy (i.e., <3% error) for classifying quality factors. These functions make
fewer mistakes in classifying software that is low quality than is the case when linear
vectors of metrics are used because the critical values provide additional information
for discriminating quality. In addition. we develop an effective stopping rule for adding
metrics to the BDF that is based on quality/cost considerations.

We show that it is important to perform a marginal analysis (i.e., identification
of the incremental contribution of each metric to improving quality) when making a
decision about how many metrics to include in the discriminant function. If many
metrics are added to the set at once, the contribution of individual metrics is obscured.
Also, the marginal analysis provides an effective rule for deciding when to stop adding
metrics. We also show that certain metrics are dominant in their effects on classifying
quality for Space Shuttle software (i.e., dominant metrics make fewer mistakes in
classifying metrics than non-dominant ones) and that additional metrics are not needed
to accurately classify quality. Related to the property of dominance is the property of
concordance, which is the degree to which a set of metrics produces the same result
in classifying software quality. A high value of concordance implies that additional
metrics will not make a significant contribution to accurately classifying quality; hence,
these metrics are redundant.
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The contributions of this research are the following:

(1) both statistical and application criteria should be used to determine which metrics
and how many metrics should be used to classify maintenance quality;

(2) a marginal analysis should be performed on each metric to determine whether its
addition will increase the quality/cost ratio;

(3) the Boolean discriminant function (BDF) is a new type of discriminant for classi-
fying maintenance quality;

(4) our application of the Kolmogorov-Smimov (K-S) distance is a new way to de-
termine a metric’s critical value; and

(5) we have developed a new stopping rule for adding metrics: the ratio of the relative
improvement in quality to the relative increase in cost.

1.1. Related research

Our model is one of a class of models concerned with the classification of quality,
sometimes referred to as the identification of fault-prone modules. Porter and Selby
[1990] used classification trees to partition multiple metric value space so that a se-
quence of metrics and their critical values could be identified that were associated with
either high quality or low quality software. This technique is closely related to our
approach of identifying a set of metrics and their critical values that will satisfy quality
and cost criteria. However, we use statistical analysis to make the identification.

Briand et al. [1998] used logistic regression to classify modules as fault-prone
or not fault-prone as a function of various object oriented metrics. In another example
of logistic regression. Khoshgoftaar and Allen [1997] used it to classify modules as
fault-prone or not fault-prone as a function of faults, requirements, performance, and
documentation software trouble report metrics. While one of our objectives is similar
— classify modules as either high quality or low quality — we derive from this binary
classification several predictive continuous quality and cost metrics. These metrics
are used to predict the quality of software that will be delivered by development to
maintenance and the cost of achieving it.

Khoshgoftaar er al. [1996a] used nonparametric discriminant analysis in each
iteration of their military system project to predict fault-prone modules in the next
iteration. This approach provided an advance indication of reliability and the risk
of implementing the next iteration. They also conducted a similar study involving a
telecommunications application, again using nonparametric discriminant analysis, to
classify modules as either fault-prone or not fault-prone [Khoshgoftaar et al. 1996b].
Our approach has the same objective but we produce BDFs in terms of the original
metrics as opposed to using density functions as discriminators.

Khoshgoftaar and Allen [1998] have also developed models for ranking modules
for reliability improvement according to their degree of fault-proneness as opposed
to whether they are fault-prone or not. They used Alberg Diagrams [Ohisson and
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Alberg 1996] that predict percentage of faults as a function of percentage of modules
by ordering modules in decreasing order of faults and noting the cumulative number
of faults corresponding to various percentages of modules. The imperative in safety
critical systems like the Space Shurle is to investigate all suspect modules because
even the module with the lowest a priori reliability risk could pose a safety hazard
in operation. Our previous research showed a very high association between module
failures and metric values that exceeded the critical values [Schneidewind 1995}, as
we will show later.

The following topics are covered: Discriminative Power model, approach to vali-
dation, and quality control and prediction applications of the model, section 2; detailed
description of validation methodology, section 3; comparison of validation with appli-
cation results for quality contro! and prediction, section 4; quality point and confidence
interval estimates, section 5: comparison of BDF and linear discriminant function qual-
ity classification results, section 6: development metric characteristics of modules that
failed during maintenance. section 7; and conclusions about the contributions of the
model to quality control and prediction and the results obtained to date in applying it
to the Space Shurtle, section §.

[38)

Discriminative power model

3N

1. Discriminative power validation

Using our metrics validation methodology [IEEE 1998; Schneidewind 1992}, and
the Space Shurtle flight software metrics and discrepancy reports (DRs). we validate
metrics with respect to the quality factor drcount. This is the number of discrepancy
reports written against a module. In brief, this involves conducting statistical tests to
determine whether there is a high degree of association between drcount and candidate
metrics. As shown in figure 1, we validate metrics on one random sample (validation
sample) of 100 modules from Build 1 and apply the validated metrics to three random
samples (application samples) of 100 modules each from Build 2 that are both disjoint
among themselves and from the validation sample, drawn from a population of 1397
modules of Space Shuttle flight software. Nikora and Munson argue for the need of a
measurement baseline against which evolving systems may be compared [Nikora and
Munson 1998]. Our baseline is Build 1 in figure 1. The measurement results from
Build 1 provide the data source for controlling and predicting the quality delivered to
maintenance and for comparing predicted with actual quality, once the latter is known.
Next, we define Discriminative Power.

2.1.1. Discriminative Power

Given the elements A ofa matrix of n modules and m metrics (i.e.. nm metric
values), the elements MC; of a vector of m metric critical values, the elements F; of
a vector of n quality factor values, and scalar FC of quality factor critical value, AJ;
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Figure 1. Measurement process.

-must be able to discriminate with respect to Fj, for a specified FC, as shown in the
following relation:

M;; >MC; & F; > FC and 0
A’fij < MC]' < F, < FC

fori=1,2,...,n,and j = 1,2,...,m with specified o, where a is the significance
level of various statistical tests that are used for estimating the degree to which a set of
metrics can correctly classify software quality. In other words, do the indicated metric
relations imply corresponding quality factor relations in (1)? This criterion assesses
whether MC; has sufficient Discriminative Power to be capable of distinguishing a set
of high quality modules from a set of low quality modules. If this is the case, we use
the critical values in Quality Control and Prediction described below. The validation
process is illustrated in figure 1, where the critical values MC; are produced in the Test
phase of Build 1 by using the metrics M;; from the Design phase and the quality factor
F; (e.g., drcount) that is available in the Test phase. Discrepancy reports are written
against the software throughout development but they are not significantly complete
until the end of the Test phase for a build during which failures are observed. The
counts of discrepancy reports and metrics that are associated with a module were col-
lected at the completion of a build by a metrics analyzer, using the source code as input.
If a discrepancy report involves multiple modules, it is counted against every module
affected. The desired quality level is set by the choice of FC. The lower its value, the
higher the quality requirement; conversely, the higher its value, - the lower the require-
ment. A value of zero is appropriate for safety-critical systems like the Space Shuttle.

It is important to recognize that validation is performed retrospectively. That is,
with both metrics M;; and quality factor F; in hand for Build 1, we can evaluate how
well the metrics would have performed if they had been applied to Build 1. If the
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metrics perform well, we say they are validated and it is our expectation that they
will perform adequately when applied to Build 2. (i.e., not as well as when applied to
Build 1 because of possible differences in module characteristics between Build 1 and
Build 2 but better than using unvalidated metrics). Next, we describe the application
of the model to quality contro] and prediction.

2.1.2. Quality control and prediction

Quality control is the evaluation of modules with respect to predetermined critical
values of metrics. The purpose of quality control is to allow software managers to
identify software that does not meet quality requirements early in the development
process so corrective action can be taken when the cost is low. Quality control is
applied during the Design phase of Build 2 in figure 1 to flag modules below quality
limits for detailed inspection. The validated BDFs, comprised of the metrics Mij and
their critical values MC; that are obtained from Build 1, are used to either accept or
reject the modules of Build 2 [Schneidewind 1997a,b]. At this point in the development
of Build 2, only the metric data Aij and MC; are available.

Quality predictions are used by the developer and maintainer to anticipate rather
than react to quality problems. The predictions provide indications of the quality of
the software that would be delivered to maintenance. Figure 1 shows the metrics
controlling and predicting the quality of software that will be delivered to maintenance
early in the development of Build 2. Accompanied by rigorous inspection and test,
this process will result in improved quality of Build 2 and the software that is released
to maintenance. of which Build 2 is a part. Once all of the quality factor data F;
(e.g., drcounr) have been collected for Build 2, at the end of the Test phase as shown
in figure 1, the quality of Build 2 would be known. This, then, becomes the actual
quality of Build 2 in the maintained software.

3. Validation methodology

The basis of this model is a methodology for validating BDFs and their critical
values that have the ability to discriminate high quality from low quality. We use a
three-stage process for selecting metrics for quality control and prediction:

(1) compute critical values of the candidate metrics;

(2) for the set of candidate metrics and critical values, find the optimal combination
based on statistical and application criteria: and

(3) apply a stopping rule for adding metrics.

Table 1 provides a functional description of each stage. The three stages take
place during the Test phase of Build 1 of figure 1, once all the quality factor data
F; (e.g., drcount) are available. The sections that follow provide the details of the
statistical analysis for each stage.
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Table 1
Functional description of metrics validation process.
Statistical Purpose Result
test/procedure
Stage 1 Kolmogorov- Compute the critical values of the Metrics ranked by K-S test
Smirnov candidate metrics. results for input to stage 2.
(K-5) _
Stage 2 Contingency Use the critical values obtained from Metric sets with increasing
table analysis stage 1 to form a set of BDFs. Use numbers ‘of metrics, each set
the BDFs to estimate quality and cost with estimated quality and
of inspection for each set of metrics, cost of inspection.

starting with one metric, and
increasing by one until the stopping
rule is satisfied.

Stage 3 Stopping rule Add metrics to stage 2 until the ratio Validated BDFs and their
for adding of relative incremental quality to critical values that provide
metrics relative incremental inspection cost the highest estimated quality

reaches a maximum. " relative to the estimated cost

of inspection.

Table 2
Kolmogorov-Smirnov distance for drcount = 0 vs. drcount > 0. Validation sample | (n = 100 modules).
Metric (symbol) Definition (counts per module) Critical value Distance fa Rank
Prologue size (P)  Change history line count in 38 0.585 0.005 1
module listing .
Statements (S) Executable statement count 26 0.557 0.005 2
Etal (£1) Unique operator count 10 0.492 0.005 3
Nodes () Node count (in contro! graph) 11 0.487 0.005° 4

3.1. Stage I1: compute critical values

Critical values MC; are computed, using a new method we have developed,
which is based on the Kolmogorov—Smimov (K-S) test {Conover 1971]. This test was
investigated for application to software metrics because of its ability to indicate the
value of a metric (i.e., critical value) where maximum discrimination occurs between
two samples of modules — one of high quality and the other of low quality. The
method has consistently yielded good results for controlling the quality of Space Shurtle
software as our results will show. The K-S test is exact for continuous distributions
and conservative (i.e., the true alpha is less than the specified value) for discrete metrics
data [Conover 1971]. In addition, the large range (e.g., 0-2316 for prologue size) and
fine granularity (e.g., units of one for prologue size) of the metrics data approximate
continuous distributions. Thus, the K-S test is appropriate for analyzing metrics data.

Table 2 shows the metric definitions, critical values MC;, and K-S distances
for four metrics of the validation sample. These metrics were selected for analysis
based on their relatively high K-S distance compared to other metrics that had been
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Figure 2. K-S test: Prologue size CDF (sample 1, n = 100 modules).

collected on the Space Shurtle. The K-S method tests whether the sample cumulative
distribution functions (CDF) are from the same or different populations. The test
statistic is the maximum vertical difference between the CDFs of two samples (e.g.,
the CDFs of M;; for drcount < FC and drcount > FC). If the difference is significant
(te., o £ 0.005), the value of M;; corresponding to maximum CDF difference is used
for MC;. This relationship is expressed in equation (2). This concept is illustrated in
figure 2, for the critical value of prologue size, where we show the CDFs for drcount
= 0 and drcount > 0. In this example, the critical value is 38. This is the value
of prologue size where there is the maximum difference between the CDFs. This is
the value of prologue size where there is the maximum discrimination between high
quality (drcount = 0 curve) and low quality (drcount > 0 curve). Metrics are added
to the BDF in the order of their decreasing K-S distance:

K-S(MC;) = max{[CDF(M,; | F; < FC)] - [CDF(ar; | ;> FO)]}. (@)

The history of changes (e.g., requirements, design, and code) and other activities
(e.g., inspections, tests, and failure and fault observations) are recorded at the beginning
of a module’s listing (i.e., prologue). The number of lines in this section is called
the prologue size. Because this metric records the volatility of the software, it is
a very good quality discriminator, as our results will demonstrate. A statemen is an
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executable statement in the Hal/S programming language that is used to code the Space
Shuttle flight software.

3.2. Stage 2: perform contingency table analysis

3.2.1. Validation contingency table

For each BDF identified in stage 1 we use the contingency table (see table 3)
and its accompanying x> statistic [Conover 1971] to further evaluate the ability of
the functions to discriminate high quality from low quality, from both statistical (e.g.,
values of x2 and a) and application (e.g., ability of the metric set to correctly clas-
sify low quality modules) standpoints. In table 3, MC; and FC classify modules into
one of four categories. The left column contains modules where none of the metrics
exceeds its critical value; this condition is expressed with a Boolean AND function
of the metrics. This is the ACCEPT column, meaning that according to the classi-
fication decision made by the metrics, these modules have acceptable quality. The
right column contains modules where at least one metric exceeds its critical value: this
condition is expressed by a Boolean OR function of the metrics. This is the REJECT
column, meaning that according to the classification decision made by the metrics,
these modules have unacceptable quality. The top row contains modules that are high
quality; these modules have a quality factor that does not exceed its critical value (e. g.,
drcount = 0). The bottom row contains modules that are low quality; these modules
have a quality factor that exceeds its critical value (e.g., drcount > 0).

Equation (3) gives the algorithms for making the cell counts of modules, using
the BDFs of F; and M;; that are computed over the n modules for m metrics. This
equation is an implementation of the relation given in (1).

Ch =CQ€IINT FOR((F; S FC)A (Myy S MC)) A -+ A (Mim < MCr)),
1=

Ciz =COUNT FOR((F; < FC) A (My1 > MCpV -+ V (Mim > MC),
i=

(3)
n

C21 =COUNT FOR((F; > FC) A (i1 S MC) A -+ A (Mim < MCp)),
1=

Cz2 = COUNT FOR((F; > FO) A (M > MC V -+ V (i > MCp),
i=

for j=1,...,m, and where

rrein_ ) COUNT(: — 1)+ 1 FOR Boolean expression true,
COUNT() = { COUNTG —1)  otherwise:
COUNT(0)=0.

The counts correspond to the cells of the contingency table (Cyy, Ca, Ca;. and
C12), as shown in table 3, where row and cclumn totals are also shown: 7, ny, N2, N,
and :V;. The analysis could be generalized to include multiple quality factors. if
necessary; in this case, the contingency table would have more than two rows.

255




N.F. Schneidewind / Software quality control and prediction model

Table 3
Validation contingency table.
NQL; <MC)) V(AL > MC))
P <38A 5,26 P >38vS, > 26
High quality Cu =30 Cia=27 n; =57
F; <FC type 2
drcount = ()
Low quality Cy =1 Chn=42 na =43
Fi >FC type |
drcount > 0
Ny =31 N =69 n = 100
RF =1, RFM = | TF =192
ACCEPT REJECT

In addition to counting modules in table 3, we must also count the quality factor
(e.g., drcount) that is incorrectly classified. This is shown as Remaining Factor, RF,
in the ACCEPT column. This is the quality factor count on modules that should
have been rejected. Also shown is Total Factor. TF, the total quality factor count
on all the modules in the sample (i.e., the sum of drcount). Lastly we show RFM
(Remaining Factor Modules) that is the count of modules with quality factor count >0
(i.e., modules with Remaining Factor, RF).

Table 3 and subsequent equations show an example validation, where the optimal
combination of metrics from table 2 and their critical values for a random sample of
100 modules (sample 1), from the population of 1397, is prologue size (P) with a
critical value of 38 and statements (S) with a critical value of 26. This low value of
statements is understandable because the median value in the builds analyzed is 23.
There are many small modules that call a subroutine, compute a value, and transfer
control to another module. Later we will explain how we arrived at this particular
combination of metrics as the optimal set.

3.2.2. Statistical criteria

We validate a BDF statistically by demonstrating that it partitions table 3 in
such a way that C; and C», are large relative to C, and Cy;. If this is the case, a
large number of high quality modules (e.g., modules with drcount = 0) would have
M;; < MC; and would be correctly classified as high quality. Similarly, a large number
of low quality modules (e.g., modules with drcounr > 0) would have Af;; > MC; and
would be correctly classified as low quality. One measure of the degree to which this
is the case is estimated by the chi-square (x?) statistic [Conover 1971]. If computed
Xz > X2 (chi-square at specified ay) and if computed . < ag, then these results
suggest that a given BDF can discriminate between high and low quality. However,
because the X2 test may not produce consistent results [Eman 1998], we use it only as
one of several indicators of Discriminative Power. Other criteria are misclassification
rates and, most important, application criteria (see below). We note that the use of
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chi-square and alpha as statistical criteria is independent of the application (i.e., these
criteria could be used whether the application is metrics or personnel management).
Application criteria, on the other hand, such as quality and inspection (see below) are
meaningful in the context of the metrics application.

3.2.2.1. Misclassification

We compute the degree of misclassification in table 3 by noting that ideally
Cii=n; =N, Ci2 =0, Cyy =0, Cra = na = N>. The extent that this is not the
case is estimated by rype I misclassifications (i.e., the module has low qualiry and the
metrics “say” it has high quality) and type 2 misclassifications (i.e., the module has
high quality and the metrics “say” it has low qualiry). Thus, we define the following
measures of misclassification:

Proportion of modules of type 1: P = Czl. %)
n
Cia
Proportion of modules of type 2: b= nl-' (3)
Proportion of modules of type 1 +type 2: Pj; = g—'—l—'_—ql—z (6)

n
For the example. P, = (1/100) - 100 = 1%, P, = (27/100) - 100 = 27%, P> =
((1+27)/100) x 100 = 28%.

3.2.3. Application criteria

It is insufficient to validate only with respect to statistical criteria. In the final
analysis. it is the performance of the metrics in the application context that counts.
Therefore, we validate metrics with respect to the application criteria: quality and
inspection, which are related to the quality achieved and the cost to achieve it, respec-
tively [Schneidewind 1997a,b]. At the Design phase of Build 2 in figure 1, we predict
that the quality computed by equations (7)-(12) will be delivered to maintenance, as-
suming that the modules that are rejected by the quality control process are inspected
and tested and that the problems that are found are corrected. Furthermore, we predict
that the degree of inspection computed by equation (13) will be required to achieve
this quality.

3.2.3.1. Quality
First, we estimate the ability of the metrics to correctly classify quality, given
that the quality is known to be low: proportion of low quality (e.g., drcount > 0)
modules correctly classified
LQC = Oz 7

n2

For the example, LQC = (42/43) - 100 = 97.7%.
Second, we estimate the ability of the metrics to correctly classify quality, given
that the BDF has classified modules as ACCEPT. This is done by summing the quality
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factor in the ACCEPT column in table 3 to produce Remaining Factor, RF (e.g.,
remaining drcount), given by equation (8):

n
RF=Y F;FOR((F; > FC) A (M;; < MC))A --- A (M SMCH)A -

i=]
A(Mim S MCp)), forj=1,...,m. (8)

This is the sum of quality factor F; (e.g., drcount) on modules incorrectly classi-
fied as high quality because (F; > FC)A (M;; < MC;) for these modules. We assume
that the elements of F; are additive and that the lower its value, the higher the quality
of the module. This would be the case for any quality factor of interest in this analysis:
discrepancy report count, error count, fault count, and failure count.

We estimate the proportion of RF by equation (9), where TF is the total quality
factor F; for the validation sample:

RF
== 9
RFP = — 9)

For the example. from table 3 there is a one DR on one module that is incorrectly
classified (i.e., RF = 1). The total number of DRs for the 100 modules is 192.
Therefore, RFP = (1,192) - 100 = 0.52%.
We estimate the density of RF by equation (10):
RF

RFD = —. (10)
n

For the example, RFD = 1/100 = 0.01 drcount/module.

In addition, we estimate the count of modules that were incorrectly classified
because they have DRs written against them (i.e., have F; > FC). The proportion
remaining RMP is given by equation (11). Note that RMP = P, (proportion of rype I
misclassifications) when FC = 0 (i.e., the only modules with F; > 0 will be in the
Cy; cell); see table 3.

RFM

RMP = , an
n

where RFM is given by
n
RFM = COE’l;\TT FOR((H >0) A (M S MC)) A --- A (My; < MCy)

A AN(Mim S MCp)), forj=1,...,m. (12)

For the example, there is one accepted module with one DR, so RMP = (1/100)-100 =
1%.

3.2.3.2. Inspection

Inspection is one of the costs of high quality. We are interested in weighing
inspection requirements (i.e.. percent of modules rejected and subjected to detailed
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Table 4
Discriminative Power validity evaluation (sample 1, n = 100 modules).
Critical values Statistical criteria Application criteria
Metric set P S El N PP xI acfory: LQC RFP RMP [
< % S % S %
P 38 2 21 332 84x10™Y 953 156 2 62
P.S 38 26 1 27 267 24x1077 977 052 1 69
P.S,El 38 26 10 I 30 225 21x107" 977 052 1 72

K-S distance  0.585 0.557 0.492 0.487

P: prologue size, S: statements. E1: etal, N: nodes

inspection) against the quality that is achieved, for various BDFs. We estimate inspec-
tion requirements by noting that all modules in the REJECT column of table 3 must
be inspected; this is the count Cys + Cas. Thus. the proportion of modules that must
be inspected is given by
1= G2t sz.
n

For the example. I = ((27 + 42)/100) - 100 = 69% and the percentage accepted is
1 —1=31%.

(13)

3.2.4. Summary of validation results

The results of the validation example are summarized in table 4. The properties of
dominance and concordance are evident in these validation results and in other samples
we have analyzed from this data. That is, a point is reached in adding metrics where
Discriminative Power is not increased because: (1) the contribution of the dominant
metrics in correctly classifying quality has already taken effect, and (2) additional
metrics essentially replicate the classification results of the dominant metrics — the
concordance effect. This result is due to the property of the BDF used as an OR
function, which will cause a module to be rejected if only one of the module’s metrics
exceeds its critical value. These effects can only be observed if a marginal analysis is
performed, where metrics are added to the set one-by-one and the calculations shown
in table 4 are made after each metric is added. For each added metric, its effect is
evaluated with respect to both statistical and application criteria. In addition, a suitable
stopping rule must be used to know when to stop adding metrics (see the next section).

3.3. Stage 3: Apply a stopping rule for adding metrics

One rule for stopping the addition of metrics to a BDF is to quit when RFP no
longer decreases as metrics are added. This is the maximum quality rule. This rule is
illustrated in table 4. When a third metric, ezal (E1), is added, there is no decrease
in RFP and RMP nor is there an increase in LQC. If it is important to strike a balance
between quality and cost (i.e., between RFP and 1), we add metrics until the ratio of
the relative change in RFP to the relative change in I is maximum, as given by the
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Table §
Application contingency table.
AL < MC)) V(AL > MC))
P, <38A5,<26 Pi>38vS;>2
High quality Type 2
? ? ? ?
Low quality Type 1
? ? ? ?
N1 =40 N2 =60 n =100
ACCEPT REJECT

Quality Inspection Ratio (QIR) in equation (14), where i refers to the previous RFP
and I:

_ |ARFP|/RFP,

QAR = —77 77

(14)

For the example,

10.52 — 1.56]/1.56  _
QIR(P —= P,S) = Gy 5.90.

This is the value of QIR in going from one metric prologue size (P) to two metrics
(P, S), adding statements (S).

Also, QIR(P.S — P,S,E1) = 0. This is the value of QIR in going from two
metrics (P, S) to three metrics (P, S, E1), adding etal (E1).

Therefore. we stop adding metrics after starements has been added. In this par-
ticular case, equation (14) produces the same metric set as the maximum quality rule.

4. Comparison of validation with application results

In order to compare validation with application results, we first show how the
Contingency table looks at the Design phase of Build 2 in figure 1, when only the
metrics M;; and their critical values MC,; are available. This is shown in table 5, where
the “?” indicates that the quality factor data F; are not available when the validated
_ metrics are used in the quality contro! function of Build 2. During the Design phase
of Build 2, modules are classified according to the criteria that have been described.
A second disjoint random sample of 100 modules (sample 2) was used to illustrate
the process. Whereas 31 and 69 modules were accepted and rejected, respectively,
during Build 1, 40 and 60 modules were accepted and rejected, respectively, during
Build 2. The rejected modules would be given priority attention (i.e., subjected to
rigorous inspection).

A comparison of the validation sample (Build 1) with the application samples
(Build 2) with respect to statistical criteria is shown in table 6. A comparison of the
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Table 6
Statistical criteria Pl and P2 for metric set; P, S. Validation (sample 1) vs. application (samples 2-4)
n = 100 modules.

»

Pl: percentage type | misclassification P2: percentage type 2 misclassification

Sample I ~ Sample 2 Sample 3 Sample 4 Sample |  Sample 2 Sample 3 Sample 4

1.0 1.0 4.0 3.0 27.0 24.0 18.0 220

Table 7
Application criteria LQC and RFP for metric set: P,S. Validation (sample 1) vs. application (samples
2-4), n = 100 modules.

LQC: percentage of low quality modules (drcount  RFP: percentage of quality facior (drcownt) incor-
> 0) correctly classified rectly classified

Sample 1~ Sample 2 Sample 3 Sample 4 Sample I  Sample 2 Sample 3 Sample 4
97.7 97.3 91.1 93.2 0.52 0.62 3.01 1.50

Table 8
Application criteria RFD and I for metric set: P, S. Validation (sample 1) vs. application (samples 2-4).
n = 100 modules.

RFD: density of quality factor (drcount/module) I: percentage of modules inspected
incorrectly classified
Sample 1 ~ Sample 2 Sample 3 Sample 4  Sample |  Sample 2 Sample 3 Sample 4
0.01 0.01 0.03 0.03 69 60 59 .. 63

validation sample with the application samples with respect to application criteria is
shown in tables 7 and 8. As we have mentioned, only metrics data is available when the
validated metrics are applied during the Design phase of Build 2 in figure 1. However,
to have a basis for comparison with the validation results, we computed the values
shown in tables 6-8 retrospectively (i.e., after Build 2 was far enough along to be able
to collect all of the quality factor data at the conclusion of the Test phase). The values
for samples 2—4 in tables 7 and 8 are the actual quality delivered to maintenance, as
shown during the Test phase of figure 1. The reader should compare the results of
samples 2-4 with those of sample 1 in the tables. As the accuracy of classification
of low quality software increases, the accuracy of classifying high quality software
decreases and inspection cost increases. However, the more important consideration
is to prevent low quality software from being delivered to maintenance, particularly in
safety critical systems like the Space Shuttle.

5. Quality point and confidence interval estimates

In addition to the quantities in tables 3-8, there are other quantities of interest,
such as the proportion of modules with zero and non-zero drcount and their confidence
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intervals. For these quantities, software developers and maintainers are provided with
both point estimates and interval estimates of the range in which the actual quality
values are likely to fall. Thus, they are able to anticipate rather than react to quality
problems. For example, estimates obtained from Build 1 in figure 1 are used to predict
the quality of software that would be delivered to maintenance if corrective action were
not taken. This action is the quality control step of the Design phase of Build 2 where
modules are rejected and subjected to detailed inspection and test if their metrics values
exceed the critical values. In addition, the estimates provide indications of resource
levels that are needed to achieve quality goals. For example, if the predicted quality
of the software were lower than the specified quality, the difference would be an
indication of increased usage of personnel and computer time during inspection and
testing, respectively. .

A benefit of using confidence limits is that they provide protection against pre-
diction error. A prediction error could arise because the very act of measuring and
predicting may affect the predictions — the Heisenberg Principle. For example, pro-
logue size, the record of change history, has proven to be a good predictor of quality.
However, if the software is changed in response to problems observed during the qual-
ity control function, thereby adding to the change history and prologue size, this effect
would tend to make the original predictions optimistic. Another protection against
prediction error is to periodically repeat the predictions as the software evolves over
the life cycle.

The normal approximation to the binomial distribution is used to estimate the
confidence limits of the proportions. This distribution is used because we are interested
in estimating the proportions of modules and drcount that fall into one of two categories
(i.e., a module is either accepted or rejected or DRs are either present or not present
on a module). The normal approximation gives the mean proportion p of modules or
DRs that fall into one of two categories and the confidence limits are a function of D-

The point and confidence limit estimates for module and quality factor counts
use terms that are defined below. Where it is necessary to distinguish validation from
application quantities in the computations. we use primed notation for the latter.

n: number of modules in the validation and application samples (see tables 3 and 5,
respectively).

N number of modules accepted in the validation sample of Build 1.
V21 number of modules rejected in the validation sample of Build 1.
N: number of modules accepted in the application samples of Build 2.

2\V3: number of modules rejected in the application samples of Build 2.

S5.1. Module counts

Module count estimates are made using the validation sample in the Test phase
of Build 1. These estimates are applied to the application samples in the Design phase
of Build 2 and compared with actual values in table 9.
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The proportion of all modules with quality factor F; > 0 (e.g., drcount > 0 on
module 7) in the entire validation sample is given by equation (15):

_ COUNT}_, FOR F; >0

n

(15)

DPn

where

o ) COUNT(GE — 1)+ 1 FOR expression true,
COUNT() = { COUNT(i — 1),  otherwise;
COUNT(0) =0.

We use this equation to estimate p;, in the application samples. We obtain the two-sided
confidence interval of p, from expression (16). We use this expression to estimate the
lower and upper limits of p/, in the application samples:

\ n) 1- n
PnIZa/z\/(—p(—n—e—)- (16)

As shown in table 9, we would expect the proportion of all modules with drcount > 0
in maintenance to be between 33.3-52.7% unless corrective action is taken to make
these limits lower. If corrective action is taken, this estimate provides bounds on the
resources — personnel and ‘computer time — that would be required to inspect, correct,
and test defective modules. :

The proportion of accepred modules with quality factor F; > 0 (e.g., drcount
> 0 on module ¢) in the validation sample is given by equation (17), where RFM is
obtained from equation (12):

pN| = @ (17)
N
We use this equation to estimate pNy in the application samples. We obtain the one-
sided upper confidence limit of p:V; from expression (18). We use this expression to
estimate the upper limit of pN| in the application samples:

. N1 —pN
p.-\l-i-Za\/(p 1)(NI D 1)' (18)

As shown in table 9, we would expect the proportion of accepted modules with drcount
> 0 in maintenance to be < 8.45% as the result of the quality control effort in the
Design phase of Build 2.

The proportion of rejected modules with quality factor F; > 0 (e.g.. drcount > 0
on module 7) in the validation sample is given by equation (19):

(pa)(n) — (REM)

pNy = 19)

This is equal to: (all modules with quality factor F; > 0) minus (accepted modules
with quality factor Fj > 0), divided by the number of rejected modules. We use this
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equation to estimate pNN; in the application samples. We obtain the one-sided lower

confidence limit of PN from expression (20). We use this expression to estimate the
lower limit of p V! in the application samples:

‘-‘r - .'\"a
pN> —Za\/(p\Z)(N_’ p _).

As shown in table 9, we would expect the proportion of rejected modules with drcount
> 0 in maintenance to be 2 51.2%% as the result of the quality control effort in the
Design phase of Build 2.

(20)

5.2, Quality factor counts

Quality factor proportion count estimates in (21)-(24) are made using the val-
idation sample in the Test phase of Build 1. Quality factor total count estimates in
(25) and (26) use data from the validation sample and data that is available in the
application samples in the Design phase of Build 2: number of modules accepted, M
and number of modules rejected, N3. These estimates are applied to the application
samples in the Design phase of Build 2 and compared with actual values in tables 9
and 10.

The proportion of quality factor F; > 0 (e.g., drcount > 0) that occurs on accepred
modules in the validation sample is given by equation (21):

RF 5
dy = TF" (21)
where RF is obtained from equation (8) and TF is the total quality factor F; for the'
validation sample. We use this equation to estimate d; in the application samples. We
obtain the one-sided upper confidence limit of d, from expression (22). We use this
expression to estimate the upper limit of d] in the application samples:

(d)(1 = dp) .
A (22)

As shown in table 9, we would expect the proportion of drcount > 0 on accepted
modules in maintenance to be < 1.38% as the result of the quality control effort in
the Design phase of Build 2.

The proportion of quality factor F; > 0 (e.g., drcount > 0) that occurs on rejected
modules in the validation sample is given by equation (23):

dr=1-d. (23)

We use this equation to estimate d; in the application samples. We obtain the one-sided
lower confidence limit of d> from expression (24). We use this expression to estimate
the lower limit of d5 in the application samples:

Q—%V@ﬂ%ﬁﬂ 24)
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Table 9
Validation predictions (sample 1) vs. application actual values (samples 2-4).
Point estimates  95% Confidence limits Actual values
(sample 1) (sample 1) Sample 2 Sample 3 Sample 4

P proportion of all 43.0% 33.3-32.7% 37.0% 45.0% 44.0%

modules with

drcount > 0
p-N|: proportion of 3.22% LE 8.45% 2.50% 9.76% 8.11%

accepted modules
with drcount > 0

p\a: proportion of 60.9% GE 51.2% 60.0% 69.5% 65.1%
rejected modules
with drcount > 0

d,: proportion of 0.52% LE 1.38% 0.62¢¢ 3.01% 1.50%
dreount > 0 on
accepted modules

di: proportion of 99.5% GE 98.6% 99.4% 97.0% 98.5%
drcount > 0 on
rejected modules

As shown in table 9, we would expect the proportion of drcount > 0 on rejected
modules in maintenance to be > 98.6% as the result of the quality control effort in
the Design phase of Build 2.
The total quality factor F; > O (e.g., drcount > 0) that occurs on accepted
modules in the validation sample is given by equation (25):
D, = i—f - V. | (25)
We use this equation as a predictor of D] in the application samples. As shown in
table 10, we would expect the toral drcount on accepted modules in maintenance to be
1.29, 1.32, and 1.19 for application samples 2, 3, and 4, respectively. The reason for
the three estimates of sample 1 is that each sample has a different number of accepred
modules N7 in equation (25).
The total quality factor of F; > 0 (e.g., drcount > 0) that occurs on rejected
modules in the validation sample is given by equation (26):

_ (TF=RF)
Dr=—x

N3 - (26)

We use this equation as a predictor of D} in the application samples. As shown in
table 10, we would expect the toral drcount on rejected modules in maintenance to
be 166.1, 163.3, and 174.4 for application samples 2, 3, and 4, respectively. The
reason for the three estimates of sample 1 is that each sample has a different number
of rejected modules IN] in equation (26).

Ten of the actual values out of the fifteen cases in table 9 fall within the confidence
limits. The average relative error across six comparisons between sample 1 versus
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Table 10
Validation actual values and predictions (sample 1) vs. application actual values (samples 2-4).

Actual  Estimate  Actual  Estimate  Actual Estimate  Actual
sample 1 sample | sample 2 sample | sample 3 sample | sample 4

Dy: rtotal dreount 1 1.29 1 1.32 3 1.19 3
on accepted modules
D3 total drcount 191 166.1 160 163.3 161 174.4 197

on rejected modules

Table 11
Comparison of Boolean Discriminant Function (BDF) with Linear Discriminant Function (LDF). Validity
evaluation (sample 1, n = 100 modules).

Statistical criteria Application criteria

Function Metric set P (%) Py (%) Xa ac for y7 LQC (%) I (%)
BDF P.S 1.0 27.0 26.7 24x 107" 97.7 69.0
LDF 9 metrics 9.0 9.0 375 ~0 79.1 43.0

LDF metric set (counts per module): Halstead etal. eta2, n1, and n2: lines of code. prologue size, nodes,
paths, and maximum path.

samples 2—4 in table 10 is 28.9% with a standard deviation of 30.7%. Variation in
results may be caused by sampling error (i.e., in order to obtain disjoint samples, it
Was necessary to sample without replacement).

6. Comparison of Boolean and linear discriminant functions

We compared the quality classifying ability during validation of the Boolean dis-
criminant function (BDF) with an alternate method: the linear discriminant function
(LDF) consisting of the summation across metrics of the product of standardized met-
rics variables and standardized classification coefficients [Jobson 1992]. For the BDF,
we used the optimal metrics set ~ prologue size and statements — and results obtained
from table 4. For the LDF. we used the set of nine metrics listed in table 11 and a
marginal analysis that yielded the highest Discriminative Power as measured by the
eigenvalue and x>. The comparison is shown in table 11. In the comparison, we used
both statistical and application criteria. In the application category, we did not compute
RFP and RMP for the LDF as we did in table 4. Unlike the BDF where equations
(8) and (9) count quality factor and (11) and (12) count modules that are misciassi-
fied into the ACCEPT category, there is no algorithm for making these computations
for the LDF. It would have been necessary to compare the metrics and drcount for
each module with the LDF to determine how the metrics classified the modules and
drcount. However, a good comparison is obtained by using LQC. In this example,
table 10 shows that the BDF does a better job of classifying the low quality modules
(e.g., lower value of P| and higher value of LQC) and that LDF does a better job of
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Table 12
Metric characteristics of failed modules.
Failure Severity ~ Module  Prologue  Statements  Etal  Nodes  drcoum
number level ID size
1 2 13 493 738 46 394 22.
2 3 974 299 192 31 98 2
3 2 1286 115 110 28 43 5
4 3 711 205 ] 5 96 6
5 3 1300 82 3 8 20 I
6 3 515 851 875 44 529 15
7 2 464 69 15 16 12 4
7 2 465 76 30 24 21 4
7 2 466 68 15 16 12 4
-7 2 467 72 30 24 21 2
7 2 468 153 10 11 73 3
7 2 472 100 1 6 40 1
8 4 555 943 819 34 174 26
9 3 904 122 128 31 64 1
10 4 882 - 157 107 30 51 5
Critical value 38 26 10 11 0
Failed modules mean 253.7 204.9 23.6 110.3 6.7
Build 2 mean 134.6 70.2 16.7 28.4 1.8

classifying the high quality modules (e.g.. lower values of P> and I). As stated in
section 1, the reason for this result is that BDFs make fewer mistakes in classifying
software that is low quality than is the case when linear vectors of metrics are used
because the critical values provide additional information for discriminating quality.
The implications for applying the validated metrics during the quality control function
of the Design phase of Build 2 is that the BDF would yield higher quality and the
LDF would yield lower cost. Our preference is the BDF in a safety critical system
like the Space Shuttle, where high quality software is the paramount objective.

7. Metric characteristics of failed modules

Further evidence of the model’s ability to identify low quality during development
is shown in table 12. This table shows the 15 modules that failed during maintenance
of the 1397 modules of Build 2 in figure 1, where the severity of the 10 failures
decreases from 2 to 4. In the case of failure #7, six modules caused this failure. The
table also shows the module metrics and validated critical values that were obtained
during Build 1. For all failed modules, one or more of their metric values exceed the
critical value. Metric values in iralics would fail to reject these modules during quality
control of the Design phase of Build 2. However, this would be compensated for by
the metric prologue size that would have correctly rejected all of these modules. To
illustrate the difference in metric characteristics of the failed modules versus all the
modules of Build 2, the means of each were computed. The difference in means is
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significant at o < 0.05. As this example illustrates, although a metrics program can
alert the developer to the possibility of unreliable software, it cannot prevent failures
from occurring. In this example, the inspection and test process failed to find and
correct the problems before Build 2 entered maintenance.

8.  Conclusions

A model was developed for controlling and predicting the quality of software that
is delivered by development to maintenance. The model provides software developers
and maintainers with both point estimates and interval estimates of the range in which
the actual quality values are likely to fall. Thus, they are alerted to the need to take
corrective action.

It is important when validating and applying metrics to consider both statistical
and application criteria and to measure the marginal contribution of each metric in
satisfying these criteria. When this approach is used, we observe that a point is reached
where adding metrics makes no contribution to improving quality and the cost of
using additional metrics increases. This phenomenon is due to the metric classification
properties of dominance and concordance. Using our approach, we achieved an error
of < 3% in classifying quality factors for the samples used in the study. The ratio of
the relative improvement in quality to the relative increase in inspection cost is a new
and effective stopping rule for adding metrics.

Our Boolean discriminant function (BDF) is a new type of discriminant for clas-
sifying software quality to support an integrated approach to control and prediction in
one model, and our application of the Kolmogorov-Smimov distance is a new way
to determine a metric’s critical value. On this application, the BDF, using two met-
rics, was superior to a linear discriminant function, using nine metrics, in classifying
low quality software: however, when used for quality control, the BDF requires more
inspection.

Finally, with a very limited sample of modules that caused failures we found that
the validated metrics. if they had been applied to the modules that eventually failed,
would have acted as early indicators of these failures.
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Abstract

We expose some of the truths about
COTS, discounting some exaggerated claims
about the applicability of COTS, particularly with
regard to using COTS in safety critical systems.
Although we agree that COTS has great potential
for reduced development and maintenance time
and cost, we feel that the advocates of COTS have
not adequately addressed some critical issues
concerning reliability, maintainability,
availability, requirements risk analysis, and cost.
Thus we illuminate these issues, suggesting
solutions in cases where solutions are feasible and
leaving some questions unanswered because it
appears that the questions cannot be answered due
to the inherent limitations of COTS. These
limitations are present because there is inadequate
visibility ~and  documentation of COTS
components.

Introduction

In this paper we analyze three important
aspects of COTS software: 1) reliability,
maintainability, and availability; 2) requirements
risk assessment, using risk factors from the Space
Shuttle and modifying them for more general use;
and 3) cost framework. We are motivated to
address these issues because we feel that the
COTS community has not adequately addressed
some very important questions concerning the
applicability of COTS when used in a host
system. We define a host system as follows: it
contains both COTS and non-COTS software; the
latter is specific to the operational mission of the
organization; and the mission cannot be satisfied
entirely by COTS components. Our concerns are
reinforced by Kohl: “The most significant
challenges of V&V of COTS products has to do
with knowledge of the functionality, performance
and quality of these products. Because these
products tend to be developed for large,

commercial markets as opposed to being
developed to a specification for a single customer,
they tend to provide a variety of useful and
desirable features for the market that they are
targeted for, at the expense of the specific system
needs in which such products may be used.
Further, quality and reliability are sometimes not
considered critical when time-to-market is a
driving requirement. Thus, it is sometimes the
case that these COTS products contain features
and functionality that may not be fully known,
even to the vendor.” [KOH99].

Many vendors produce products that are
not domain specific (e.g., network server) or have
limited functionality (e.g., mobile phone). In
contrast, many customers of COTS develop
systems that are domain specific (e.g., target
tracking system) and have great variability in
functionality (e.g., corporate information system).
This discussion takes the viewpoint of how the
customer can ensure the quality of COTS
components. In addition to direct quality
evaluation, we also consider requirements risk
analysis in a later section, which indirectly affects
quality. We must distinguish between using a non-
mission critical application like a spreadsheet
program to produce a budget and a mission
critical application like military strategic and
tactical operations. Whereas customers will
tolerate an occasional bug in the former, zero
tolerance is the rule in the latter. We emphasize
the latter because this is the arena where there are
major unresolved problems in the application of
COTS. Furthermore, COTS components may be
embedded in host systems. These components
must be reliable, maintainable, and available, and
must interoperate with the host system in order for
the customer to benefit from the advertised
advantages of  lower development  and
maintenance costs. Interestingly, when the claims
of COTS advantages are closely examined, one
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finds that to a great extent these COTS
components consist of hardware and office
products, not mission critical software [CLE97].

Obviously, COTS components are different
from host components with respect to one or more
of the following attributes: source, development
paradigm, safety, reliability, maintainability,
availability, security, and other attributes.
However, the important question is whether they
should be treated differently when deciding to
deploy them for operational use; we suggest the
answer is no. We use reliability as an example to
Justify our answer. In order to demonstrate its
reliability, a COTS component must pass the same
reliability evaluations as the host components,
otherwise the COTS components will be the
weakest link in the chain of components and will
be the determinant of software system reliability.
The challenge is that there will be less information
available for evaluating COTS components than
for host components but this does not mean we
should despair and do nothing. Actually, there is a
lot we can do even in the absence of
documentation on COTS components because the
customer will have information about how COTS
components are to be used in the host system. To
illustrate our approach, we will consider the
reliability, maintainability, and availability
(RMA) of COTS components as used in host
systems.

In addition, COTS suppliers should consider
increasing visibility into their products to assist
customers in determining the components’ fitness
for use in a particular application. We offer ideas
about information that would be useful to
customers and what vendors might do to provide
it.

This paper is organized as follows: reliability,
maintainability, availability, requirements risk
analysis, improved visibility into COTS, cost as
the universal COTS metric, and conclusions.

Reliability

There are some intriguing  questions
concerning how to evaluate the reliability of
COTS components that we will attempt to answer
[SCH991]. Among these are the following: How
do we estimate the reliability of COTS when there
is no data available from the vendor? How do we
estimate the reliability of COTS when it is
embedded in a host system? How do we revise
our reliability estimates once COTS has been

upgraded? A fundamental problem arises in
assessing the reliability of a software component:
a software component will exhibit different
reliability performance in different applications
and environments. A COTS component may have
a favorable reliability rating when operated in
isolation but a poor one when integrated in a host
system. What is needed is the operational profile
of COTS components as integrated into the host
system in order to provide some clues as to how to
test COTS components. We will assume the
worst-case  situation that documentation and
source code are not available. Thus, inspection
would not be feasible and we would have to rely
exclusively on testing and reliability calculations
derived from test data to assess reliability.

The operational profile identifies the
criticality of components and their duration and
frequency of use. Establishing the operational
profile leads to a strategy of what to test, with
what intensity, and for what duration. We must
recognize that a COTS component must be tested
with respect to boz/ its operational profile and the
operational profile of the host system of which it
is a part. The COTS component would be treated
like a black box for testing purposes similar to a
host component being delivered by design to
testing but without the documentation. Testing the
COTS components according to these operational
profiles will produce failure data that can be used
for two purposes: 1) make an empirical reliability
assessment of COTS components in the
environment of the host system and 2) provide
data for estimating the parameters of a reliability
model for predicting future reliability [SCH97].

A comprehensive  software reliability
engineering process is described in [ANS93]. As
pointed out by Voas, black box and operational
testing alone may be inadequate [VOA98]. In
addition, he advocates using fault injection to
corrupt one component (e.g., COTS component)
to see how well other components (e.g., the host
system) can tolerate the failed component. While
this approach can identify problems in the
software, it cannot fix them without
documentation. Thus there must be a contract with
the vendor that allows the customer to report
problems to the vendor for their resolution.
Unfortunately, from the customer’s standpoint,
vendors are unlikely to agree to such an
arrangement unless the customer has significant
leverage such as the Federal Government. In the
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case where documentation is available, it would
be subjected to a formal inspection of its
understandability and  usability. If  the
documentation satisfies these criteria, it would be
used as an aid to inspecting any source code that
might be available. Next we consider COTS
maintainability issues.

Maintainability

In the case of maintainability, there are more
intriguing issues. Suppose a problem occurs in a
host system. Is the problem in COTS or in the
host software? Suppose it is caused by an
interaction of the two. The customer knows the
problem has occurred, but does not know how to
fix it if there is no documentation. The vendor, not
being on site, does not know the problem has
occurred. Even the vendor may not know how to
fix the problem if the source of the problem is the
host software or an interaction between it and
COTS components. In addition, suppose the
customer needs to upgrade the host software and
this upgrade is incompatible with the COTS
components. Or, conversely, the vendor upgrades
COTS components and they are no longer
compatible with the host software. Lastly, suppose
there are no incompatibilities, but the customer
may be forced to install the latest COTS
components upgrade in order to continue to
receive support from the vendor. None of these
situations can be resolved without either the
customer having documentation to aid in fixing
the problem, or a contract with the vendor of the
type mentioned above. As in the case of
reliability, when neither of these remedies is
available, problems can only be identified but they
cannot be fixed. Thus the software cannot be
maintained. An additional factor that impacts both
reliability and maintainability is that the vendor is
unlikely to continue to support the software if the
customer modifies it. Thus the situation
degenerates to one in which the customer is totally
dependent on vendor support to-achieve reliability
and maintainability objectives. This may be
satisfactory for office product applications but it is
unsatisfactory for mission critical applications.
Next we consider the COTS availability issues.

Availability

High availability is crucial to the success of a
mission critical system. What will be system

availability using COTS? To attempt to answer
this question, it is useful to consider hardware as a
frame of reference. The ultimate COTS is
hardware; it has interchangeable and replacement
components. Maintenance costs are kept low and
availability is kept high by replacing failed
components with identical components. Unlike
hardware, availability cannot be kept high by
"replacing”" the software. A failed component
cannot be replaced because the replacement
component would have the same fault as the failed
component. Fault tolerant software is a possibility
but it has had limited success. We see that
availability is a function of reliability and
maintainability as related by the formula:

Availability = MTTF/(MTTF+MTTR) =
I/1+(MTTR/MTTE),

where MTTF is mean time to failure and MTTR is
mean time to repair. MTTF is related to reliability
and MTTR is related to maintainability. For high
availability, we want to drive time to failure to
infinity and repair time to zero. However, we
have seen from the discussion of reliability and
maintainability that achieving these objectives is
problematic. Thus to achieve high availability,
either the COTS software must be of high intrinsic
reliability — probably a naive assumption — or
there must be in place a strong vendor
maintenance program (this assumption may be
equally naive). Next we consider COTS visibility
issues.

Improved Visibility into COTS

Major drawbacks of including COTS in a
software system are the lack of visibility into how
the COTS components were developed and an
incomplete understanding of the components’
behavioral properties [SCH991]. Without this
information, it is difficult to assess COTS
components to determine their fitness for a
particular application. As suggested by McDermid
in [TAL98]. a partial solution might be for COTS
vendors to identify a set of behavioral properties
that should be satisfied by the software, and then
certifying that those properties are satisfied. For
instance, an operating system supplier might
certify that a lower-priority task does not interrupt
a higher priority task as long as the higher priority
task holds the resources required to continue
processing. COTS vendors might also include the
specifications of those components as well as
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details of verification activities in which those
specifications had been used to show that specific
behavioral properties of the software were
satisfied. For instance, an effort in progress at the
Jet Propulsion Laboratory [JPL98] involves
developing libraries of reusable specifications for
spacecraft software components using the PVS
specification language [SRI98]. The developers of
the libraries work cooperatively with anticipated
customers to develop the specifications and
identify those properties that the components
should satisfy. As they develop the libraries, the
component developers use the PVS theorem
proverb to show that the behavioral properties are
satisfied by the specification. These proofs are
intended to be distributed with the libraries. When
customers modify the libraries, perhaps to
customize them for a new mission, they will be
able to use the accompanying proofs as a basis for
showing that the modified specification exhibits
the desired behavioral properties. Similarly,
commercial vendors could work with existing and
potential customers through user groups to
discover those behavioral properties in which
users are the most interested, and then work to
certify that their components satisfy those
properties. Next we present a methodology for
analyzing requirements risk when COTS is
embedded in a host system. ‘

Requirements Risk Analysis

In this section we first describe the Shuttle
risk management process. Then we consider how
it could be modified to accommodate the use of
COTS. In providing this analysis, it should not be
inferred that we necessarily advocate the use of
COTS on the Shuttle or on any other safety
critical system. Whether COTS should be
employed would depend upon  many
environmental and application factors. Rather, our
goal is to investigate whether the Shuttle risk
analysis process is adaptable to the use of COTS.

Shuttle Risk Management Process

One of the software development and
maintenance problems of the NASA Space Shuttle
Flight Software organization is to evaluate the risk
of implementing requirements changes. These
changes can affect the reliability, availability and
maintainability of the software. To assess the risk
of change, a number of risk factors are used. The
risk factors were identified by agreement between

NASA and the development contractor based on
assumptions about the risk involved in making
changes to the software. This formal process is
called a risk assessment. No requirements change
is approved by the change control board without
an accompanying risk assessment. During risk
assessment, the development contractor will
attempt to answer such questions as: “Is this
change highly complex relative to other software
changes that have been made on the Shuttle?” If
this were the case, a high-risk value would be
assigned for the complexity criterion. To date this
qualitative risk assessment has proven useful for
identifying possible risky requirements changes
or, conversely, providing assurance that there are
no unacceptable risks in making a change.

The following are the definitions of the risk
factors, where we have placed the factors into
categories and have provided our interpretation of
the question the factor is designed to answer. In
addition, we added the risk factor requirements
specifications techniques because we feel that this
one could represent the highest reliability risk of
all the factors if a technique leads to
misunderstanding of the intent of the
requirements. For each of the risk factors, we
analyze its appropriateness for COTS. As you will
see, this analysis not only determines the
adaptability of the process to COTS, but also
exposes some serious issues in the employment of

~COTS in any system. For example, the Shuttle

risk process is all about assessing the risk of
requirements changes. In COTS, we would not
want to attempt changes because we don’t have
the necessary source code and other
documentation. Furthermore, if we did make a
change, it could invalidate our software license.
This situation illuminates a serious deficiency in
using COTS. Therefore, our only recourse, if
feasible, is to change the host software to reflect
the change. In other words, COTS has to be used
“as is” in our system. Thus, in what follows, the
risk factors are a function of the change in the
host software and how the change relates to and
can be integrated with COTS.

In order to modify the Shuttle risk process to
make it applicable to the use of COTS, we must
change the software change metric from lines of
code to components. In addition, we must change
our view of the software from a set of individual
instructions to a set of interconnected
components. Otherwise, it would make no sense
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to talk about number of lines of code to be
changed in the host software when we only have
visibility of COTS at the component level. We
will also assume an object oriented development
and maintenance paradigm.

Requirements Change Risk Factors

The following are the definitions of the
Shuttle risk factors modified to accommodate the
use of COTS, where, as mentioned previously,
only host software components can be changed,
but in making the changes, the relationship with
COTS components must be considered. If the
answer to a yes/no question is "yes". it means this
is a high-risk change with respect to the given
factor. If the answer to a question that requires an
estimate is an anomalous value, it means this is a
high-risk change with respect to the given factor.
When a change to a component is mentioned
below, it will be understood to be a change to host
software.

Complexity Factors

o Qualitative assessment of complexity of
change (e.g., very complex)

- Is this change highly complex relative to
other software changes that have been made
on the system? What are the interfaces
between the host components and COTS
components that are affected by the change?
Is the change more complex for the host
system than for the host software alone?

0 Number of modifications or iterations on the
proposed change

- How many times must the change be
modified or presented to the Change Control
Board (CCB) before it is approved?

Size Factors

0 Number and types of components affected by
the change

- How many components and types of
components must be changed to implement
the requirements change?

0  Size of software components that are affected
by the change

- How many component objects are affected
by the change?
Criticality of Change Factors

o Whether the software change is on a nominal or
off-nominal component path (i.e., exception
condition)

- Will a change to an off-nominal component
path affect the reliability of the software?

0 Operational phases affected by the changed
component path (e.g., ascent, orbit, and
landing)

- Will a change to a critical phase of the
mission (e.g., ascent and landing) affect the
reliability of the software?

Locality of Change Factors
0 The area of the affected change (i.e., critical

area such as a component path for a mission
abort sequence)

- Will the change affect objects of
components that are critical to mission
success?

0 Recent changes to components in the area

affected by the requirements change

- Will successive changes to the components
in a given area lead to non-maintainable code?

o New or existing components that are affected

- Will a change to new components (i.e., a
change on top of a change) lead to non-
maintainable software?

0 Number of system or hardware failures that
would have to occur before the components
that implement the requirement are executed

- Will the change be on a component path
where only a small number of system or
hardware failures would have to occur before
the changed components are executed ?

Requirements Issues and Function Factors
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o Number and types of other requirements
affected by the given requirement change
(requirements issues)

- Are there other requirements that are going
to be affected by this change? If so, these
requirements will have to be resolved before
implementing the given requirement.
o Possible conflicts among requirements
changes (requirements issues)

- Will this change conflict with other
requirements changes (e.g., lead to conflicting
operational scenarios)

o  Number of principal software functions and
components affected by the change

- How many major software functions and
components will have to be changed to make
the given change?

Performance Factors

0 Amount of memory required to implement the
change

- Will the change use memory to the extent
that other functions and components will not
have  sufficient memory to operate
effectively?

o  Effect on CPU performance

- Will the change use CPU cycles to the extent
that other functions and components will not
have sufficient CPU capacity to operate
effectively?

Personnel Resources Factors

o Number of inspections of components and
objects required to approve the change

- Will the number and duration .of inspections
be significant?

0  Manpower required to implement the change

- Will the manpower required to implement
the software change be significant?

0o  Manpower required to verify and validate the
correctness of the change

- Will the manpower required to verify and
validate the software change be significant?

Tools Factor
modification

o Software tools creation or
required to implement the change

- Will the implementation of the change
require the development and testing of new
tools — for example the development of
component and object testing tools?

0 Requirements specifications techniques (e.g.,
flow diagram, state chart, pseudo code, control
diagram).

- Will the requirements specification method
be difficult to understand and translate into
components and objects?

As an example, Table 1 shows a partial list of the
risk factors compiled for the for the Shuttle Three
Engine Out Auto Contingency and Single Global
Positioning Systen requirements changes.

Modifications

Number of Number of Manpower
Requirements Inspections Required

Of Change Issues Required to Make
Request Change
-7 238 12 2093 MW

Table 1
Change  SLOC Complexit Criticality Numberof Number of
Request Changed y of Change Principal
Number Rating of Functions
Change Affected
107734 1933 4 3
Discussion

Although we believe we have made a
reasonable translation from a code oriented

requirements risk analysis to a component
o.iented one, it is not clear that the resultant risk
model would be entirely usable because no matter
how we define the software entities of interest, we
still do not have equal visibility of the host
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software and COTS. We suggest this is a
fundamental problem that has not been solved by
COTS advocates, particularly for safety critical
systems. Next we present a framework for
identifying and analyzing the cost of COTS.

Cost as the Universal COTS Metric

We focus on factors that the user should
consider when deciding whether to use COTS
software [SCH992]. We take the approach of
using the common denominator cost. This is done
for two reasons: first, cost is obviously of interest
in making such decisions and second a single
metric — cost in dollars — can be used for
evaluating the pros and cons of using COTS. The
reason is that various software system attributes,
like acquisition cost and availability (i.e., the
percentage of scheduled operating time that the
system is available for use), are non-
commensurate quantities. That is, we cannot relate
quantitatively “a low acquisition cost” with "high
availability". These units are neither additive nor
multiplicative. However, if it were possible to
translate availability into either a cost gainor loss
for COTS software, we could operate on these
metrics mathematically. Naturally, in addition to
cost, the user application is key in making the
decision. Thus one could develop a matrix where
one dimension is application and the other
dimension is the various cost elements. We show
how cost elements can be identified and how cost
comparisons can be made over the /ife of the
software. Obviously, identifying the costs would
not be easy. The user would have to do a lot of
work to set up the decision matrix but once it was
constructed, it would be a significant tool in the
evaluation of COTS. Furthermore, even if all the
required data cannot be collected, having a
framework that defines software system attributes
would serve as a user guide for factors to consider
when making the decision about whether to use
COTS software or in-house developed software.
Note that host software could be developed either
in-house or under contract. If the former, the in-
house cost element below apply to host software.

Certainly, different applications would have
varying degrees of relationships with the cost
elements. For example, flight control software
would have a stronger relationship with the cost of
unavailability than a spreadsheet application.
Conversely, the latter would have a stronger
relationship with the cost of inadequacy of tool

features than the former. Due to the difficulty of
identifying specific COTS-related costs, our initial
approach is to identify cost elements on the
ordinal scale. Thus, the first version of the
decision matrix would involve ordinal scale
metrics (i.e., the cost of unreliability is more
important for flight control software than for
spreadsheet applications). As the field of COTS
analysis matures and as additional data is
collected about the cost of using COTS, we will
be able to refine our metrics to the ratio scale
(e.g., the cost of unreliability in a host system is
two times that in a commercial COTS system).

The cost elements for comparing COTS
software with in-house software are identified
below. This list is not exhaustive; its purpose is to
illustrate the approach. These elements apply
whether we are comparing a system comprised of

all COTS components with all in-house
components or comparing only a subset of COTS
components  with  corresponding  in-house

components. Explanatory comments are made
where necessary. Mean values are used for some
quantities in the initial framework. This is the case
because it will be a challenge to collect any data
for some applications. Therefore, the initial
framework should not be overly complex.
Variance and statistical distribution information
could be included as enhancements if the initial
framework proves successful.

Cost Elements
Cc() = Cost of acquiring COTS software in year j.

Ci(j) = Cost of developing in-house software in
year j.

Uc(j) = Cost of upgrading COTS software in year
J-

Ui(j) = Cost of upgrading in-house software in
year j.

P(j) = Cost of personnel who use the software
system in year j. This quantity represents the
value to the customer of using the software
system.

M.(j) = Cost per unit time of repairing a fault in
COTS software in year j. This is the cost of
customer time involved in resolving a problem
with the vendor.
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M;(j) = Cost per unit time of repairing a fault in
in-house software in year j.

R.(j) = Mean time of repairing a fault that causes a
failure in COTS software in year j. This is the
average time that the user spends in resolving a
problem with the vendor.

Ri(j) = Mean time of repairing a fault that causes a
failure in in-house software in year j.

T(j) = Scheduled operating time for the software
system in year j.

A(j) = Availability of software system that uses
COTS software in year j.

Ai(j) = Availability of software system that uses
software developed in-house in year j.

These quantities are the fractions of T(j) that the
software system is available for use.

F.(j) = Failure rate of COTS software in year j.
Fi(j) = Failure rate of in-house software in year j.

These quantities are the number of failures per
year that cause loss of productivity and
availability of the software system.

In some applications, some or all of the
above quantities may be known or assumed to be
constant over the life of the software system.
Using the above cost elements, we derive the
equations for the annual costs of the two systems
and the difference in these costs. In the cost
difference calculations that follow, a positive
quantity is favorable to in-house development and
a negative quantity is favorable to COTS.

Cost of Acquiring Software

Difference in annual cost = C.(j) - C;(j) (1)

Cost of Upgrading Software

Difference in annual cost = U() - U;(j) (2)

Cost of Software being Unavailable for Use

Annual cost of COTS software being unavailable
for use = (1-A(j)) * PQ).

Annual cost of the in-house software being
unavailable for use = (1-A;(j)) * P().

Difference in annual cost =

PG) * (AQ) - AG)) 3)
Cost of Repairing Software

Average annual cost of repairing failed COTS
software = F.(j) * T(§) * R.(G) * M.()).

Average annual cost of repairing failed in-house
software = F,(j) * T(j) * Ri(j) * Mi(j).

Difference in annual cost =

TQG) * (FQ) * R() * M()) - (FO) * R() *
Mi(3) “

Then, TC;. total difference in cost in year j, is the
sum of (1). (2), (3), and (4). Because there is the
opportunity to invest funds in alternate projects,
costs in different years are not equivalent (i.e.,
funds available today have more value than an
equal amount in the future because they could be
invested today and earn a future return).
Therefore. a stream of costs over the life of the
software for n years must be discounted by k, the
rate of return on alternate use of funds. Thus the
total discounted cost differential between COTS
software and in-house software is:

' TCi/(1+k)

In this initial formulation, we have not
included possible differences in functionality
between the two approaches. However, a
reasonable assumption is that COTS software
would not be considered unless it could provide
minimum  functionality to  satisfy  user
requirements. Thus, a typical decision for the user
is whether it is worth the additional life cycle
costs to develop an in-house software system with
all the desirable attributes.

Conclusions

The decision to employ COTS on mission
critical systems should not be based on
development cost alone. Rather, costs should be
evaluated on a total life cycle basis and RMA
should be evaluated in a system context (i.e.,




COTS components embedded in a host system).
COTS suppliers should also consider making
available more detailed information regarding the
behavior of their systems, and certifying that their
components satisfy a specified set of behavioral
properties. In addition, a formal risk assessment of
requirements should be performed taking into
account the characteristics of host system
environments.
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Abstract

Despite the fact that there has been a surge of publications in verification and validation of knowledge-based systems and expert systems in
the past decade. there are still gaps in the study of verification and validation (V&V') of expert systems. not the least of which is the lack of
appropriate semantics for expert system programming languages. Withous a semantics. it is hard to formally define and analyze Knowledge
base anomalies such as inconsistency and redundancy. and it is hard to assess the effectiveness of V&V tools. methods and techniques that
have been developed or proposed. In this paper. we develop an approximate declarative semantics for rule-based knowledge bases and
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1. Introduction

The last decade has witnessed a surge of publications in
verification and validation (V&V) of expert systems and
knowledge-based systems which resulted in several books
[1.2]. and special issues of several journals [3-6). Major Al
conferences have had workshops and special sessions that
were devoted to the issue. A sample of additional publica-
lions can be found in Refs, [7-40]. Many V&V methods.
techniques and tools have been proposed, developed or
implemented for expert system applications. On the other
hand. advances in knowledge engineering have resulted in
better methodologies and practice that aim at reducing
errors and faults during system development and mainte-
nance [41-44]. Despite all these activities. there are still
gaps in the study of V&V of expert systems. not the least
of which is the lack of appropriate semantics for expert
system programming languages. Without a semantics. it is
hard to formally define and analyze knowledge base (KB)
anomalies such as inconsistency and redundancy. and it is
hard to assess the effectiveness of V&V tools. methods and
techniques that have been developed or proposed.

* Corresponding author, Tel.: - 1-916-278-7952: fux: + 1-916-273-
774
E-mail addresses: zhangd @ ecs.csus.edu (D. Zhang). lugi@cs.nps.navy.
mil (Lugi

V&V of expert systems in general and V&V of KB in
particular need to be based on a sound theoretical founda-
tion. However, the reality is that “'the construction of either
declarative or Hoare-style semantics for current rule-based
languages is a hopeless task™ [31]. In the long run. concern
for verifiability and reliability should lead to the develop-
ment of programming languages with tractable semantics
for expert system applications. In the meantime. some
approximate semantics (declarative or imperative) is needed
to enable a formal analysis of properties of expert system
components (such as a KB). For example. sketches of an
approximate declarative semantics. which is based on a
logical interpretation of a rule base, and an approximate
imperative semantics, which is based on axiomatic logic
and invariants, for the current rule-based programming
languages were proposed in Ref. [31].

Adopting a declarative semantics for a rule-based
language has some potential difficulties: (a) It is hard to
provide a purely declarative interpretation of rules. because
they often behave in an imperative manner with the intended
side effects of updating a working memory. Simply treating
a rule base as a logical theory may result in an excessively
conservative semantics. (b) Due to the fact that consistency
in the first order logic is semi-decidable. there does not exist
an algorithm that can find all inconsistencies and redundan-
cies in an arbitrary first order KB. thus. making it difficult to
develop practical V&V tools.
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Table 1
Typesetting conventions

Symbol Meaning
b A nonempty domain of elements
< An interpretation

éoldface capital letter
Ordinary capital letter

Set of wif (literals). or set of rules
Individual wif (literal)

Lower-case ordinary letter Constant

Lower-case italic letter(s) Predicate

r Rule label

f Fact label

LHS (r) Set of literals in the left-hand
side of r.

RHS (r) Set of literals in the right-hand
side of r

true. false Logical values

Lyv.nxoy g Variable

There have been several efforts toward providing a
precise characterization of the logical nature of a rule-
based KB [11.31.35]. An algorithm to detect all inconsis-
tencies and redundancies in “a certain well-defined.
reasonably expressive. subset of all quasi-first-order-logic
KB™ is presented in [1 1]." The results in [35] indicate that a
rule-based language is still amenable to logical analysis.

The purposes of this paper are to {a) Provide an approx-
imate declarative semantics for rule-based KB so that
various KB anomalies can be formally defined and correctly
understood. We go beyond the results of [11.31.35] by deal-
ing with not only KB inconsistencies and redundancies. but
also KB circularity and incompleteness. (b) Establish KB
anomaly analysis procedures using theories in the first order
predicate logic (such as the model theory, satisfiability, and
derivability of certain tautologous well-formed formulas
[45-477). This may serve as the theoretical underpinnings
of practical V&V tools. (c¢) Offer classifications for cases of
inconsistency. redundancy. circularity and incompleteness
commonly found in rule-based KB. (d) Propose guidelines
on how to remedy the anomalies once they are identified.

The rest of the paper is organized as follows: Section 2
briefly reviews the terms and concepts to be used throughout
the paper. Definitions, classifications and analyses of KB
inconsistency, redundancy. circularity and incompleteness
are provided in Sections 3-6, respectively. Some possible
remedial measures for KB anomalies are discussed in
Section 7. Section 8 concludes with remarks about future
work.

" The key step in the algorithm is the subsumption tests which must be
decidable for a given KB in order tor the KB to be completely analyzed for
inconsistency and redundancy. The subsumption tests will be decidable
only when the expressions to be tested satisfy the quantifier decoupled
(g-decoupled) property [11]. In general. one does not know in advance if
a given KB will generate uny non g-decoupled expressions because there
does not exist a syntactic test for determining the g-decoupleability of the
KB.

2. Preliminaries

We assume that the reader is familiar with the bas
concepts and terminology in the first order predicate log
[45-47]. We use wff to denote the well-formed formulas
the predicate logic. An atomic formula (or atom) refers to
n-place predicate symbol and its # terms. A ground atom
one not containing any variables. A /ireral is an atom or
negation. To avoid confusion, we adopt the tyvpesetti
conventions as given in Table 1.

Definition 1. An inrerpreration of a wit consists of a no
empty domain D. and an assignment of “values™ to ea
constant. function symbol and predicate symbol appeari:
in the wif according to the following: (a) assigning
element of D to each constant: (b) assigning a mappi
from D" to P to each n-ary function symbol: and (c) assig
ing 2 mapping from D" to {rrue. false} to each n-ary prec
cate symbol.

Definition 2. A wiff H (or a set C of wif) is sarisfial
{consistent) if and only if there exists an interpretation
such that H (or every wff in C) is evaluated to rrue for
variable assignments” under {. which is denoted = H (
C). { is said to be a model of H(C) and ¢ satisfies H Q).
(C) is inconsistent if and only if there exists no model for
(C). H is said to be valid (raurologous) if and only if eve
possible interpretation satisfies H. H is a logical con|
quence of C if and only if every model of C is alsg
mode! of H. This is denoted as ¢ = H.

Theorem 1. Givenasetof wif C= {P, ..., Q} and a wff
CEHifand onlyvif PA ... AQ— His valid.

Definition 3. Let C and ' be sets of wif. ¢ = ¢’ deno
that C is satisfiable if and only if C' is satisfiable [45].

This paper focuses on rule-based knowledge bases]
rule-based KB can be divided into a set of facts which
stored in a working memory (WM) and a set of rules sto
in a rule base (RB). Rules represent general knowle
about an application domain. They are entered into a
during initial knowledge acquisition or subsequent
updates. Facts in a WM provide specific informat
about the problems at hand and may be elicited either dy
mically from the user during each problem-solving sess
or statically from the domain expert during knowle
acquisition process, or derived through rule deduction.

* A variable assignment is a mapping from variables in a wif to elen
inD.
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Table 2
Same. synonymous. complementary. mutual exclusive. incompatible. and conflict literals
Semantics Syatax
Identical Difterent
Eguivalent Same: denoted as Ly = L.*. L, and L. are syntactically Synonvmous: denoted L, = L." L, and L. are

identical (same predicate symbol. same arity. and same

terms at corresponding positions)
Conflict”
and its negation

Complementary: denoted L,#L.. L, and L. are an atom

syntactically ditferent. but logically egquivalent

Muruar exclusive: denoted L; € L. L. and L. are
syntactically ditferent and semantically have opposite
truth values

Incomparible: denoted L. = L. L, and L. are
complementary pair of synonymous literals

" Given two rules r and r.. if LHS(r,) = {P1,....Pn} and LHS(r, )
" Given two rules r, and r.. if LHS(r,) = {P1..... Pu} and LHS(r))

{P1.....Pn'}. then LHSir) = LHS:r)iffVi € [1.n)Pi = Pi’.
{P1'....Pu'}. then LHS(z ) = LHS:r,) iff Vi € (1] Pi = Pi'.

* L. and L. are conflict literals. denoted L; T} L., if (L.#L.) v (L SLowviL. =L,

Definition 4. Rules in a KB have the format: P, A... A
P, — R.where P,’s are the conditions (collectively. the /efr-
hand side. LHS. of a rule). R is the conclusion (or right-
hand side. RHS. of a rule). and the symbol ™" — " is under-
stood as the logical implication. The P;’s and R are literals.
If the conditions of a rule instance are satisfied by facts in
WM. then its conclusion is deposited into WM.,

Definition 5. A fact is represented as a ground atom. It
specifies an instance of a relationship among particular
objects in the problem domain. WM contains a collection
of positive ground atoms. which are deposited through
either assertion (initial or dynamic). or rule deduction.

Definition 6. A negated condition —=p(x) in the LHS of a
rule is satisfied if p(x) is not in WM for any x. A negated
ground atom —p(a) in the LHS of a rule is satisfied if p(a) is
not in WM. A negated conclusion —R in the RHS of a rule
results in the removal of R from WM. when the LHS of the
rule is satisfied.” Rule instances and negated literals can be

utilized by the inference system. but are never deposited
into WM (I11].

Definition 7. Given two sets of literals L and L'. L' is said
to be a specialization of L. denoted L’ < L. if there exists a
nonempty set of substitutions 6. such that L' = (L)f. In
particular. a literal P is a specialization of P. denoted as

P’ < P if there exists a nonempty set of substitution 8 such
that P’ = (P)6.

Definition 8. Given a set L of # literals. p(L) represents
the set of all literai permutations in L.

" There would be no effect on WM if R is notin WM when =R is derived.

Definition 9. If r is a rule and P is a literal. the expression
r. — Pis used to indicate arbitrary length derivation of P from
r. in terms of some inference methods.”

Using logical equivalence. we can always convert a logi-
cal implication into a disjunction of literals. We further
simplify the notation by dropping the logical connective
V7 from such a disjunction. For instance. the set of wif
{PAQ—R. UA =V — W} has the following logically
equivalent short representation: {—P —=QR. ~UVW?} where
each element in the set is a disjunction of literals.

Definition 10. The concepts of the same. svnonymous,
complementary.  mutual  exclusive, incompatible, and
conflict literals are defined in Table 2 in terms of syntax
and semantics considerations.

Example 1. Given the following literals: father(x, john).
male_parent(x, john). animal(sea_cucumber). vegetable
(sea_cucumber), bird(fred). —bird(fred). sent_to(x, emer-
gency_room). senr_to(x. waiting_room), expensive(x).
high_pricedix). we have:

father(x. john) = father(x. john):

farher(x. john) = male_parent(x. john):

bird(fred)2 —birdifred);

animal(sea_cucumber) & vegetable(sea_cucumber):
sent_tox. emergency_room) & senr_to(x. waiting_
room):

expensive(x) # —high_priced(x):

tather(x. john) *_ —umale_parent(x. john).

" Strictly speaking. the expression should be {r, U WM} = P because
facts in WM will be used during the derivation.
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Type

Description

Patiem

19

1-10

112

[-14

Rules with the same LHS result
in complementary conclusions
Rules with shared conditioni
result in complementary
coniclusinns

Rules with the same LHS result
in mutual exclusive conclusions
Rules with shared condition: <
result in mutual exclusive
conclusions

Rules with the same LHS result
in incompatible conclusions
Rules with shared condition:
resuli in incompatible
coniciusions

Rules with synonymous LHS
result in complementary
conclusions

Rules with shared synonymous
conditions result in
complementury conciusions
Rules with synonymous LHS
eult in mutual exclusive
conclusions

Rutes with shared synonyinous
conditions result in netuz!
exclusive conclustons

Rules with svnonymous LHS
re~ult in incompatible
corctinions

Rules with shared synonyvrous
conditions resultin incomp.tible
conclustons

Rules with consistent LHS result
in complementary conclusions

Rules with consistent LHS result
i mutual exclusive conciusions

Rules with consistent LHS result
in incompatible conclesiin.

Rules with a condition restli in
complementury literal

Rules with a certain condition
result in incompatible literal
Rules with a condition P re~uitin
mutual exclusive literal

LHSirha=LHSiryandr - P
ard r. = Q. where P=Q

LHS/r) 2 LES(ry = 2 and
r=Pandr = Q. wherz PEQ

LHSir = LHStryandr =
andr. & Q. where P= Q
LHSirp A LHStry = 2 and
r-Pandr -~ Q. where P2 Q

LHSir) =LHSiryand g, - P
and r F Q. where P = Q
LHSiry N LHSir) = Zand
r-Pandr ~Q.where P % Q

LHSir)y=LHStrhand e P
and 1. - Q. where P=QQ

L ZLHStrrand L™ Z LHSit
and L 2L andr = Pund

r - Q. vwhere PEQ

LHSiry = LHStcyund e P
and r = Q. where P=Q

L ZLHS«w»and L Z LHSir)
cnd L= Loandv - Pund

r. - Q.where P=Q
LHStry=LHStr andr - P
wad 1= Qo where P = Q

L ZLHSwrand L Z LHSie
ard L= 1L und v - Paad
r = Q.where P=
= JLHSir ) LHS. w0} A
LHSird S LHSirv =2 A FP
and 1+ Q. where P=Q
= {LHS:ir LHS r} A
LHSit A LHSiry = ZArn-P
mdr - Qowhere P=Q
CALHSH LHS o) A
LHStm D LHStrhYy =2 A =P
and 1. - Q. where P = Q
r - Q.where P € LHSiry A
P=Q
r = Q.where P € LHSIr) A
P=Q
r — Q.where P € LHStry A
P=Q

23

In this paper. we do not

consider the situation in which

rules are augmented with cerrainry faciors. Because of the
way they are defined. rules and facts are subsets of wif.
Therefore. the terms “rule™ and “fact”™ can be freelv replaced
by the term “wit throughout the rest of the paper.

3. KB inconsistency

3.1. Definition of inconsistency

The root cause of KB inconsistency is due to rules in RB.

but its manifestation is through WM. For instance. the
inconsistency of a RB containing a pair of rules {ptx) —
gix). px) —=q(x)} is not apparent until a fact pra) is
asserted into WM. In general. although the rules in a RB
may be consistent on their own (because there exists a
model for them). they can form an inconsistent theory
when combined with certain facts in WML In order for a
KB to be consistent. there needs to be a medel for both RB
and W\L
On the other hand. facts in W are changing over time due
to dyvramic assertions and retractions. If we use subscripts to
denote \tat;\ of WM at different times. RB may be consis-
tent with WM., but inconsistent with WM where i = ;.
Thus. relying on a particular WM state in verifving lhe
consistency of RB may not produce an accurate result.

Definition 11. let WM, and R(WM ) denote the
Initiu! state for WM and the reachability set of all
possibie WM states from WM, respectively. Let
WA denote all legitimate facts” for an application.
WM = COWALIWM, € RiWM )b

Definition 12.  Given two interpretations ¢ and {,. { isan
extension of §. denoted as ¢ = . if the domain and assign-
ments in ¢ are retained in .

Definition 13. Let {. be a model for WM." A KB is
inconsistent if and only if =3¢ [{. = { A = RB]

During problem solving process. inconsistent rules in RB
allow derivations of conflicting (complementary. mutual
exclusive and mcompatlble) outcomes from the same.
synonvimous  or comsistent  conditions. thus.  seriously
compromising the reliability and correctness of knowl-
2dge-based systems.

3.2, Classificarion of inconsistency

wo types of inconsistency are classified in Table 3. Each
Dvpe consists of a set of patterns and each pattern encom-
passes different cases. Type I contains anomalous situations
where rules with the same or synonymous conditions yesult
in conflict (complementary. mutual exclusive and incompa-
tible) conclusions. Type II captures the scenarios where a
chain of deduction involves a condition and a conclusion (at
two ends of the chain) which are either complementary. or
mutual exclusive. or incompatible. It is very important to
recognize the types of inconsistency for sevearal reasonst tn

" Fucts that sati~fy the validity constraints of the application dommizin,
[fthere are validity construints on facts in W \I ﬂ“-‘* the modeis consid-
ered are restricted to those that satisiy the constra
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so that effective detection algorithms can be dev eloped: (b)
the completeness of the V&V tools can be measured.

The exhaustive nature of the classification can be consid-
ered by enumerating all cases that result in an unsatisfiable
RB (Definition 13). The clue is the derivation of confiict
literals by a RB or a derived literal being in conflict with a
fact in WM. Due to space limit. we will skip a formal proof.

3.3. Analvsis

Given a RB and 2 WM containing a set of rules and a set
of facts. respectively. we can show that the KB is consistent
by trving 10 find a model for it. The way we ry to find a
model for the KB is through considering an arbitrary inter-
pretation {. If { satisfies the KB (i.e. ¢ satisfies RB and
WM). then ¢ is a model for it: otherwise. there is no
model for the KB. If a model is found. then the KB is
consistent: otherwise. it is inconsistent. We show the analy-
sis through some examples.

Example 2. Given a KB
RB = {r;.rs.ricry.r5} and a WM

rn:PAQ—A f,:P
n:RAQ—B f.:Q
CAAB—W f:R
r;:A—D
rs:B—=-D

consisting of a
= {f,.f>. £} shown below

we can show that there is no model for the KB. thus, it is
inconsistent.

Proof. We convert the KB into the set below
)y = {-P -QA.-R —~QB. —~A —BW,
—AD.-B -D.P.Q.R}
Let { be any interpretation for 0,.

 If {is a model for Q,. then k. P. F.Q.and = R;
. ACLordmo to the first two elements in Q. there must be
Aand F = B:

. Smce E; A and F; B, there mustbe = Dand =. =D in
order for —AD and -B -D to be rrue. But this is
impossible. As a result. one of the rules of —AD and
—B =D must be false under ¢

¢ Since { cannot satisfy all rules in Q,.itis not a model for
.. Because { is an arbitrary interpretation. there is no
model for . Thus. the given KB is inconsistent. [J

The inconsistency in Example 2 is of type I-13 because r,
and rs have different but consistent LHS and result in
conflicting conclusions D and —D. The proof procedure

can be automated using the resolurion principle where the
derivation of an empty clause amounts to the failure of
finding a model (or the presence of inconsistency in the
KB). In practice. we can use the structure of the derivation
generated by the resolution principle to extract a set of
inconsistent rules.

The above example demonstrates an inconsistency in the
current state of a KB. There is. however. another scenario in
which the proof procedure vields a model for a KB. but there
exists the potential of inconsistency in a possible future state
of the KB. Consider the situation where fact f, is a legitimate
nput but is not present in the WM at the time of checking.
the proof procedure will find a model for (KB — f:) and
conclude that it is consistent. (This coincides with the intui-
tive explanation that the conflicting conclusion =D is not
deducible because the LHS of r. cannot be satisfied’).”
However. inconsistency arises when fact f: is asserted into
WM. This phenomenon confirms our early arguments that:

¢ The cause of inconsistency stems from rules. but facts
will help expose the inconsistency. Thus the inconsis-
tency checking should involve both RB and W)\

¢ KB consistency can be either temporary or persistent. For
instance. KB ~ f3 is temporarily consistent until f; is
asserted. Stich a transient consistency is not a reliable
indicator. What is needed is an ultimate consistency
that guarantees that a KB will be consistent for all possi-
ble states.

* The set of all legitimate facts in un application domain
usually changes with time. Given a time period. it is
important to identify the set of all legitimate facts during
the period in order to conclude whether a KB will be
persistently consistent during the period.

Operationally. when a pair of conflicting conclusions is
derived. it amounts to a fact retraction in WM. In a rule-
based programming language. there are two types of fact
retraction: explicir one through a language construct such as
retract and implicit one through derivation of a negated fact
and negation as absence rule for WM. The implicit fact
retraction would be an indicator for RB incensistency. but
it is not a necessary condition for RB inconsistency. The
reason is that in general. a rule-based system may not have
the Church-Rosser property.” therefore the derived facts by
RB for the same initial facts in WM mav not be unique. For
instance. when both r. and r: are enabled. depending on the
conflict resolution strategy used by the control component
of the system. r. and r: can be fired in different order. As a
result. different sets of output (derived facts) will be
produced.

TIffiisnota ¢ legul input. then rulz r: can never be enabled because of the
unsatistiability of its LHS. As a result, the rule will be picked up by the
munnnl:tene\\ checking and classified as an incomplete case.

" The Church-Rosser property of & rule-bused system refers to the fact
that the order in which rules are fired does not affect the final values
produced {31].
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Example 3. Given a KB containing the following rules
and facts

:PAQ—R f,:P
n:R—W f-:Q
o W—A
r.: A——-P

we can show that there is no model for the KB. thus. the KB
1s inconsistent.

Proof. We convert the KB into the set
Q; ={-P-QR.~RW.-WA.-A ~P.P,Q}
Let { be any interpretation for (..

o If { is a model for Q.. then =. P and F.Q:

e Theremustbe = .—A. F =W and E:~R. respecuvelx in
order for —A --P -v\\A and —RW to be rrue under ¢

¢ However. there must be . R according to the first
element in Q.. R and —R cannot be both rrue under <.
As a result. one of the clauses of =P —=QR and —RW
must be falsc under ¢,

e Since ¢ cannot satisty all rules in Q.. it is not a mode] for
Q.. Because { is an arbitrary interpretation. there is no
model for Q.. Thus. the given KB is inconsistent.

The inconsistency in Example 3 is of ty pe II-1 because r
has a condition P and results in the derivation of —P. Type H
inconsistency not only introduces the logical contradiction
into the inference process. it also has other pragmatic
ramifications:

* In Example 3. the inconsistency involves a pair of
complementary literals. When r. is fired. it causes P to
be removed from WM. thus either preventing those rules
that rely on P as input from being enabled or deactiv ating
those rules that are enabled as a result of P.

¢ A list of synonymous literals and a list of mutual exclu-
sive literals must be declared and maintained as a KB is
being built and modified. In addition to Definition 6. the
following should be used to maintain the validity of WM:

If(PZ=Q)A(QE WM). then KB+ P would result in
(WM = {Q} U {P].

If (P=Q) A(QE WM). then KB P would result in
(WM — {Q}.

» Computationally. when =P is a derived fact. the infer-
ence engine will check not only for the presence of P in
W \/I but also the presence of some literal synonymous to
P.’ Alternativ ely. before a derived fact P gets deposited
into WM. the inference system also need to check for the
presence of Q in WM that is mutually exclusive to P.

" Detinition 6 now needs to be moditied to reflect the i umpact of s non-
ymous literals on the occurrence of =P in LHS or RHS of a rule.

Though the use of synonymous and mutual exclusive
literals may aid the expressive power of the language.
their potential complications in system correctness should
never be underestimated and their computational cost
should not be ignored. Therefore. the use of those literals.
especially svnonymous literals. should be judicious.

4. KB redundancy
4.1. Definition of redundancy

Though redundancy may not cause logical problems (i.e.
with no effect on the set of deducible literals). it may lead to
following situations where potential problems may arise:

* During KB maintenance or evolution. if one of the redun-
dant rules is modified and the others remain unchanged.
then the updated KB will not correspond to the intended
change. and inconsistencies can be introduced as well:

e For a KB where no certainty factors are utilized. redun-
dant rules may be enabled under a given state. thus
resulting in performance slow down because all the
enabled redundant rules may be fired. even though the
firings of those redundant rules will vield the same set of
literals (conclusions):

¢ For a KB containing certainty factors. redundancy will
become a serious problem. the reason being that each
redundant rule may be fired. resulting in multiple count-
ings of the same information. which. in turn. erroneously
increases the level of confidence assigned to the derived
literals (conclusions). This may ultimately impact the set
of deducible literals.

It redundancy is introduced by design to speed up some
classes of frequent deductions. then it is usually confined to
a subset of the cases (e.g. types [-2. I-3. I-3 in Table 4). We
can always isolate those “useful” redundant rules. and weed
out redundancy from the KB where there is supposed to be
none.

Definition 14. For a set S of rules. we define a function U
which returns the number of distinct literals in S. If both
L and =L are in S. they will be counted as two different
literals.

Definition 15. Given a set S of rules. if we can construct a
set S" of rules such that S = S’ and

(a)either S'=8 - A where A # Zand A C S:
(b)or §' = &(S). where & is a transformation on S such
that [S'] = iS} and #(S") < S): then there is redundancy
in S.
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Table 4+
Types of redundancy

Type Description Pattern
I-1 Rules having the same conclusion but different (RHS(r,) = RHS(r. n A (LHS(r,) € p(L)y A (LHS(1.} € p(L)).
permutations of the same set of conditions where L is a set of literals
1.2 A rule r. which can be deduced from a set of rules {r.....r.} b r. whera (RHS(r,) = LHS(...)» A ... A(RHS(...) =
LHStr, ) A (LHS(r v = LHS(r;)) A (RHS(r;) = RHS(r; )
I-3 A rule r which is a specialization of another rule r; (LHS(r) € LHSIir.» A (RHS(r) < RHS(1;)). where LHS(r,) and
RHS(r,) are specializations based on the same set of substitutions
1-4 A rule r. which is subsumed by another rule (LHSir,) C LHS(r. ) A(RHSIr,) = RHS(r, )
I3 Generalized subsumed rule (r; is subsumed byr andr) (RHS(r) C LHS(r.n A (RHS(r.) = RHS(r: )} A (LHSIr;) =
(LHStr;) U LHS(r,» — RHS(r,)))
1-6 Rules with same condition(s) and synonymous (RHS(r,) = RHS(r. 11 A (LHS(r,) = LHS(r; )
conclusions
-7 Rules with synonymous conditions and same (RHS(r,) = RHS(r: » A (LHS(r,) = LHS(1r; )
conclusion
I-8 Rules with synonymous conditions and synonymous (RHS(r,) = RHS(r, ' A (LHS(r) = LHS(r.
conclusion
II-1 Two rules which have the same or synonymous . ((RHS(r.) = RHS(r » v (RHS(r) = RHS(r,) A (LHS(r,)) =
conclusion but contain pairts) of conflict literals in LU (P A(LHSir»=L U {Q}). where L is set of literals and
their conditions P7.Q
I1-2 A rule with redundant condition(s) (PELHS(r D A(P S LHSr ) A
(P=P)v(P=P V(PSP
II-3 Two rule« sharing the same conclusion. and one rule (RHS(ry = RHS(r.n A (LHS(r.) = L U {P}) A(LHSiT)) =

having a singleton condition that is in conflict with a
condition of another rule

{@}). where L is set of literals and P ;1 Q

4.2. Commonly found rypes of redundancy

If either of the conditions in Definition 15 holds for a
given RB. then the RB is said to contain redundancy.
Thus. in essence. all types of redundancy are captured by
Definition 15. However. in practice. there are sets of
commonly found types of redundancy. What are included
in Table 4 are the frequently encountered types of redun-
dancy. Type I redundancy in Table 4 involves redundant
rule(s) and Type II involves redundant (or unnecessary)
literal(s). Each type encompasses a set of specific cases.

4.3. Analysis

Given a set S of rules. S + C indicates the set C of
conclusions derivable from S. If we can construct a set S’
of rules from S such that Property (a) in Definition 15 is
satisfied. we further divide C into C' and C” where S’ - C’
and A + C". We can prove that if '~ S. then S’ F A.
According to Theorem 1. forevery rule PE A, §' — P is
valid. thus C” C C" and C = C’. Therefore. rules in A are
redundant. During the analysis process we can select a
model { for §’ with regard to the enabling facts and obtain
C’ from S'. and then obtain C” from A to show C” C C'.

When S’ is constructed with Property (b) of Definition 15.
the number of literals in S’ is reduced. even though the
number of rules remain the same. Similar analysis can be
carried out to prove that C = C'. Since S’ either contains
fewer rules or has fewer literals. we can use S’ to replace S.
Examples 4 and 5 are used to demonstrate the analysis
process.

Example 4. Given the following set S of rules

r: PAQ—R
Ir:: AAB—U
I UAV—-W
I RAW=D
Is! PAQAAABAV—D

Let S'=S — {r.}. We can show that S’ = S and r: is
redundant.

Proof. We first convert S and S’ into the abbreviated
format:

S ={-P-QR.—A -BU,-U-VW,

—-R-WD.-P-Q -A—-B -VD}

§'= {-P-QR.~A =BU.=U =VW,-R =WD} f

Let { be an interpretation. Two situations need to be
considered:

1. If = S.then =.S'is obvious. This is a trivial case.

2. If kS, we need to show that E; S also holds. This boils
down to proving that k&, rs. Since =; r, in §’. we must
have F; Dor 5. =Ror F, =W

Case 1: If =; D. then F; ra
Case 2: It =; —R.then F; —Por F; —Q because
E. . Hence., =; s
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Case 3: If B, =W, then F; =Uor k; =V because

= r;

if B, =V, then &1,
if &, =U, then either F; —Aor E; =B because E.r.
Thus. F s

Therefore. if S’ is satisfied under {.50isS.8 =~ 8§,

If we choose a model ¢, for §' in which F,, {P. Q. A.B.
V}. {uis also a model for rs. The set of derivable facts from
S" and 15 are C' = (R, U.W.D} and C" = {D}. respec-
tively. Obviously, C” C C’. therefore Is is redundant. [

S is of redundancy type of I-5. Removing s will eliminate
the redundancy.

Example 5. Given the following set S of rules

r;: PAQAW—=R
s “Q—’R

Let &, be a transformation that results in a rule r, by
eliminating the literal Q from r,. and let §' = {r;.r.}. We
can show that 8’ = S and the literal Q is redundant (or
unnecessary). ’

Proof. We first convert S and S’ into the format below:

S={-P-Q-WR.QR}. §'={~P~WR.QR}

Let { be an interpretation. Two Cases need to be con-
sidered:

LIf & S’ then F, S is trivial.

2. If &, S. we need to show that F; S also holds. This boils
down to proving that whenever § is satisfied by ¢. & r,".
Since =, 1, in S, we must have B, Qor E;R

Case 1: If F;R.then k&, 1/
Case 2:If =; Qand ¥, R,"then k. —Por £ =W
must be rrue because k, r;. Hence. E 1.

Therefore. S’ = S. the literal Qinr; is redundant. O

Sisof redundancy type of I1-3. Correcting Type II redup-
dancy involves removing the literal(s) in question. For
instance. for Type II-3. when RB contains a rule set S
matching the pattern. it can be replaced by the

1 ¥ R indicates that R evaluates to false under ¢.

corresponding rule set S’ as shown below:
S: I:PLA--APEAQ—R k=]
r;y =Q—R

S": i PIA-APk—R

r--—-Q—R

5. KB circularity
5.1. Definition of circulariny

Circularity in a KB has been informally defined as a set of
rules forming a cycle [7.24.30]. What exactly a circularity
entails semantically is not that clear in the literature. In this
section, we provide a definition of the KB circularity in
terms of the derivation of tautologous rules and argue that
the phenomenon reflects an anomalous situation in a KB and
has both operational and semantic ramifications.

Definition 16. A rule E is taurologous. denoted as E. if it
contains a complementary or an incompatible pair of
literals.

Example 6. Following are two tautologous rules:

* PAQ— P, where =P and P are 2 complementary pair
(in-PVv-=QVPp

* high_priced(x) A spacious(x) — expensive(x), where
—high_priced(x) and expensive(x) are an incompatible
pair (in ~high_priced(x) V =spacious(x) V expensive(x)).

Definition 17. A nonempty set S of rules is circular if we
can deduce a tautologous rule from S.

Definition 18. A nonempty set S of rules is minimally
circular. denoted as S, if § is circular and no proper subset
of § is circular.

Given S. rules in § are said to be forming a cycle. The
deduction of a tautologous rule is trivial if Sisa singletop
set satistying the aforementioned condition. In a given S,
there may be more than one tautologous rule deducible from
it that involves different pairs of (complementary or incom-
patible) literals.

Operationally speaking. circular rules may result in
infinite loops (if an exiting condition is not properly defined)
during inference. thus hampering the problem solving
process. Semantically speaking. the fact that a tautologous
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wif is derivable indicates that the circular rule set encom-
passes knowledge that is always true regardless of any
problem specific information. In general. tautologous wffs
are those that are true by virtue of their logical form and thus
provide no useful information about the domain being
described [47]. Therefore. circular rules prove to be less
useful in the problem solving process. What is needed. as
evidenced in many real KB systems. are consistent rules that
are triggered by problem specific information (facts) rather
than tautologous rules that are true regardless of the problem
to be solved.

3.2. Types of circulariry

Circularity primarily stems from the definitions of rules in
RB. However. control strategies deployed (in places such as
the mechanisms of agendas. rule salience or priority level
definitions and module selections) in the inference system
may also be cause for the infinite looping of certain rules. In
this paper. we focus on the types of circularity that are
confined in the RB.

Definition 19. Given a mmlmallv circular rule set S. we
define two sets of literals Sl and SR as follows:

S, ={LL ELHS(DArE S}

Sy = {L'L ERHS( AT € §}.

The types of circularity in a rule base. as summarized
in Table 5. are classified based on enumerating possible
relationships between S and Sy and the nature of the
tautology. Type I circularity indicates cycles in which
S, = Sg. Type II describes cycles with additional condi-
tions involved in the rules. therefore. Sy is a proper
subset of SL If Cs is a cycle formed out of a minimally
circular rule set S. the girth g of Cg can be defined as
g(C¢) =Sl Cycles in these types can have a girth
ranging from one to some integer MAX where MAX
is bounded by the cardinality of the rule base [RB] of a
given KB.

3.3. Analysis

The analysis of KB circularity amounts to deriving
from a given rule base a tautologous rule r that satisfies
the conditions in Definition 16. using some inference
method.

Example 7. Below is a rule base S containing five rules

r: W—U
I PAA—R
I QAC—W

I RAB—Q
I UADAEAG—P

Using the resolution method. we can derive a tautologous
rule from S. Since S is the smallest set that yields such a
tautologous rule. it is thus minimally circular.

Proof. We convert S into the following format
S={-WU.-P-AR.—Q -CW.-R -BQ.
-U~-D-E —-GP}.

Itis not difficult to see that the following rule is derivable
from S by using the resolution method

=W =D -E =G —A-B -CW.

Since =W and W are a pair of complementary literals. the
derived rule is tautologous. Therefore. S is minimally
circular.

Incidentally. there are four other tautologous rules
involving =P and P. =Qand Q. =R and R. and —-U
and U. respectively. This example exhibits Type II-1 circu-
larity.

Once a circularity is detected. the circular rule set needs
to be svntactically redefined to break up the circularity.
Semantically. information about a problem domain needs
to be reorganized so that it will contribute to the problem
solving process. Some of the possible remedial measures for
circularity can be found in Section 7.

6. KB incompleteness

Informally speaking. a KB is incomplete when it does not
have all the necessary information to answer a question of
interest in an intended application [16.31]. Thus. complete-
ness represents a query-centric measure for the quality of a
KB. KB incompleteness is a real issue to be reckoned with
for at least the following reasons: (a) In many applications,
the KB is built in an incremental and piecemeal fashion and
it undergoes a continual evolution. The information
acquired at each stage of the evolution may be vague or
indefinite in nature. (b) The deployment of a KB system
cannot just wait for the KB to be stabilized in some final
and complete form since this may never happen.

Despite the fact that a practical KB can never
completely capture all aspects of a real problem
domain. it is still possible for a KB to be complete
for a specific area in the domain. The boundaries of
this specific area may be defined in terms of all relevan:
queries to be asked during problem solving process. If a
KB has all the information to answer those relevant
queries definirelv. then the KB is complete with regard
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Table 5

Types of circularity in a rule hase

Type Description

I-1 SL =8, for § and tautologous rule involves
complementary pair of literals

I-2 S,_ = SR for § and tautologous rule involves pair of
incompatible literals

II-1 SR c SL for § and tautologous rule involves
complementary pair of literals

I1-2 Sy C S[. for S and tautologous rule involves pair of

incompatible literals

1§, =SR)A(§J—E)A(L.“L€E)/‘\(L#—'L)
451_=S;\‘>A(§‘—E)A1L.~LEE)A(LE -L
1§-\vng)AlgFE)A(L.“LEE)AIL#"L)

lg;.{CSQ/\(ST‘E)/\(L.*LEE!/\(LE =L

to those queries. In what follows. we base our
discussions of completeness on the concepts of relevant
queries and the ability of a KB 1o answer those queries.

6.1. Definition of quen-based incompleteness

Definition 20. Given a KB. we define =, and . as sats
of all predicate symbols and askable predicate symbols in
the KB. respectively. An askable predicate symbol! is one
that can appear in a query. Usually it is the case that
Pe 220" A query @ containing predicate symbols
Pieo..p; € 2 is denoted as

Q=0wp,...py'"*

Definition 21. A set @ of relevant queries is now defined
as follows:

Q ={0:0 appears in some query session A

O=Q(,n,-.....p,)Ap, ..... pE 2.0

Definition 22.  Given a query 0 € Q. the answer to Q.
denoted as a(Q). can be either definite or unknown. a(Q)
is definite if either KB + Q or KB L ~0: Q) is unknown if
neither KB F Q nor KB F ().

Definition 23. AKBis complete with regard to a relevant
query set Qif VO € € [a(D) is definite].

6.2. Tapes of incompleteness

Let 2=P; UP,. For a predicate symbol p € 2, we

_—
" When there is incompleteness in a KB. this may not he true. as
evidenced in Table 6.
" We assume that the query Qis » conjunction of the literals containing
predicate symbols P, .. P.

introduce a set of predicate symbols Rip) on which D
directly or indirectly depends. R(p) can be obtained using
the following procedure.

INPUT: per
OUTPUT: R(p)

Rip):=:
while. IreKB [pe RHS(N] do Rip) .= R(pu
LHS(r:

while  3r € KB 39 € Py [g € RHS(r) A qg e
Rip) ALHS(n) € Rip)ldo Rip) := Rip) U LHS(1):

If a literal containing a predicate symbol p cannot be
satisfied by either a given fact or a derived fact. then it is
denoted as ¥ p. Three types of incompleteness are defined
in Table 6. Types I and II reveal KB incompleteness from
the perspective of relevant queries. ie., lack of necessary
information 1o answer queries. and Type III indicates the
potential incompleteness of the relevant query set 3 from
the perspective of known information (rules/facts).

Though the classification in Table 6 is exhaustive with
regard to Definition 23, there are pragmatic and application
specific considerations that will help determine the validity
of incompleteness cases.

6.3. Analysis

The analysis of KB incompleteness depends critically on
the availability of information regarding the relevans query
set in a problem domain. Prototyping often serves as 3
Mmeans to ascertain the relevant query set. If the relevant
query s2t is available. the analysis amounts to finding out
it all queries can be answered definitely. Checking for the
presence or absence of the aforementioned svatactic symp-
toms is an integral ‘and necessary part of the analysis
process. However. there are other considerations in the
analysis process that are semantic. pragmatic. or problem
specific. The analysis process is really an iterative ope,
because as KB continually evolves. so will the relevant
query set.

288




D. Zhang. Luqi / Knowledge-Based Svstems 12 (1999) 341-353

Table 6

Types of incompleteness

Type Descriptions [7.24.37] Pattern

1 Dangling conditions. EPIpEF g€ Rp A
unreachable conclusions ¥ q]*

11 Missing initial facts, pEPRp=2 A
missing rules P € Pysl

111 Useless conclusions. g EP Yp € =, [g € Rip

unused initial facts.
isolated rules

* Because the criterion for the completeness issue is domain-specific, it is
possible that ¢ in [g € R(p)A ¥ q] may be useless structure in the KB.
Ultimately. the domain expert or knowledge engineer has to determine
the nature of the anomaly.

Example 8. For the following KB,
LAY AT, — (D) £ s m(d)

L 2 w(y) A u{x) — r{x.y) fy 1 v(a)
I3 2 v(x) — wi(x) f1 1 u(b)
Iy 2 mx) — py(x) £y 1 u(c)
we have

Pa={p.p:}

Pxp = {py.parouvow, hon}
Ripp=1{h, rou.v.n}
Rip) = .

Since p, €EP, and [R(p)) =T Ap, & Pygl. there
exists Type II incompleteness. No rules and facts could be
used to answer queries involving p.. In addition. /1 € Rip,)
and ¥ h. So Type I incompleteness also exists. Finally. the
presence of the rule r, and the fact f; may indicate that i
should have been an askable predicate. In other words, P,is
incomplete. and there is reason to believe that the relevant
query set is incomplete also. [J

7. Remedial measures

Once KB anomalies are identified, the next issue is how
to correct the situations in which the quality of a KB has
been compromised. Though it is of pivotal importance. the
issue has not been adequately addressed in the literature. To
a certain extent, this is due to the fact that the issue of how to
mend a KB relies on a whole host of considerations, many of
which are problem or application specific. In the rest of this
section, we would like to address the issue in terms of some
general principles and provide some example remedial
measures for the cases dealt with in the previous four
sections.

For correcting inconsistency. we suggest the following
actions:

* Avoid using synonymous literals if possible.

¢ Delete one of the offending rules that derives the conflict
conclusion.

* Modify the conditions (e.g. predicate symbols) of the
rules involved such that they no longer have or share
the same or synonymous conditions.

* Modify the conclusions (e.g. predicate symbols) of the
rules involved such that they are no longer in conflict.

* Move one of the offending rules to a different rule
module such that the derivation of conflict conclusions
cannot take place in the same problem-solving session or
at the same time.

Actions to eliminate redundancy may include:

e Delete redundant rule(s).
¢ Merge or collapse rules into one.

For example. PAQ—R.-PAQ—R=Q—R
o Delete condition(s) of certain rule(s).

For examplee. PAQ—R. ~Q—R=P—R,

-Q—R
* Modity the conditions or conclusions of the redundant

rules such that they no longer are the same or synony-
mous.

To resolve circularity. the following remedial measures
may be taken:

e Remove a rule from a circular rule set.
For example. P—Q. Q—R. R—=P=P—Q.
Q—R

¢ Redefine a conclusion of a rule in the set such that it no

longer serves as a condition of another rule in the set.

For example, P— Q. Q—R. R—=P=P— Q,
Q — R'.R — P where R’ and R are no longer unifiable.

* Redefine a condition of a rule in the set such that it no
longer matches a conclusion of another rule in the set.

To plug holes in an incomplete KB, we could

* Add new rules and/or facts to make all relevant queries
definite.

For example, new rules and facts can be added to make
h(x, ¥) satisfiable in Example 8.

* Modify the initial facts to patch up holes.

¢ Modify the conditions and/or conclusions of rules
involved in an incompleteness case so that they will
be “connected” with the rest of RB.

Though it is beyond the scope of this paper, we would like
to point out that in a KB where certainty factors (CF) are
used. there are additional actions to be considered. For
instance. add or modify CF values for rules or facts. or
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modify the threshold value(s) for the CF-valye propagation
during inference process.

8. Concluding remarks

As more and rhore expert svstems and knowledge-based
systems are deployved in settings where failures may result in
loss of productivity. decision-making quality. property.
business, services. investment. or even life, ways to detect
and resolve potential anomalies in a KB become critical
issues in developing correct. accurate and reliable systems.
In order for the results to be credible. V&V techniques must
be built on a solid theoretical foundation.

It is difficult to assess many of the V&V tools. methods
and techniques that have been developed or proposed
because there is no accepted standard against which to
measure the reliability or correctness of an expert system.
Indeed there is lack of definite semantics for expert systems
in general and KB in particular. This prevents any definite
conclusions about reliability and hinders the use of expert
systems in safety-critical applications. The field of V&YV for
€xpert systems is far from having tractable formal models
that can cover all of the features of real expert systems.
which often rely on imperative state changes and other
non-logical features. Qur simplified model. though a preli-
minary one. does provide a basis for reaching definite
conclusions about the reliability of those aspects in expert
systems that can be expressed in logical terms. It is our hope
that the logical formulation presented in this paper makes 2
step in the right direction.

Future work can continue in several directions. One is
concerned with how to establish an assessment standard.
based on logical instruments similar to those discussed in
this paper. for the V&V tools and methodologies. For
instance. given a KB and its semantics T, we use Ap to
indicate the set of anomalies defined under I, For a V&V
method M. we use Ay 1o denote the set of anomalies M is
capable of discovering. M is sound if VieAylae Arl:M
is complere if Y3 € Arfie Ayl

Another direction is to study the KB anomalies in an
object-oriented (Q0Q) paradigm. Recent developments in
knowledge representation formalisms include: (a) extending
the OO paradigm to include rules (i.e. rules can be consid-
ered as a specific type of behavior for objects); (b) bringing
objects into the rule-based paradigm (i.e. rules are specified
about objects); (c) hybrid representation formalism that
blends frames, objects. cases and rules together [48]. The
next challenge to us is the issue of how o (re)define the
concepts and meanings of KB anomalies in the context of
those formalisms.

A KB should be developed based on its underlying ontol-
0gy [49.50]. It is not clear what relationship there is between
the anonymous situations that are manifested at a KB Jeve]
and the root causes at its ontology. This is yet another direc-
tion worth exploring.
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Abstract

Machine learning deals with the issue of how to build programs that improve their
performance at some task through experience. Machine learning algorithms have proven
to be of great practical value in a variety of application domains. They are particularly
useful for (a) poorly understood problem domains where little knowledge exists for the
humans to develop effective algorithms; (b) domains where there are large databases
containing valuable implicit regularities to be discovered; or (c) domains where programs
must adapt to changing conditions. Not surprisingly, the field of software engineering
turns out to be a fertile ground where many software development tasks could be
Jormulated as learning problems and approached in terms of learning algorithms. In this
paper, we first take a look at the characteristics and applicability of some frequently
utilized machine learning algorithms. We then provide formulations of some software
development tasks using learning algorithms. Finally, a brief summary is given of the
existing work.

Keywords: machine learning, software engineering, learning algorithms.

1. The Challenge

The challenge of modeling software system structures in a fastly moving scenario gives
rise to a number of demanding situations. First situation is where software systems must
dynamically adapt to changing conditions. The second one is where the domains involved
may be poorly understood. And the last but not the least is one where there may be no
knowledge (though there may be raw data available) to develop effective algorithmic
solutions.

To answer the challenge, a number of approaches can be utilized [1,12]. One such
approach is the transformational programming. Under the transformational programming,
software is developed, modified, and maintained at specification level, and then
automatically transformed into production-quality software through automatic program
synthesis [5]. This software development paradigm will enable software engineering to
become the discipline of capturing and automating currently undocumented domain and
design knowledge [10]. Software engineers will deliver knowledge-based application
generators rather than unmodifiable application programs.

In order to realize its full potential, there are tools and methodologies needed for the
various tasks inherent to the transformational programming. In this paper, we take a look
at how machine learning (ML) algorithms can be used to build tools for software
development and maintenance tasks. The rest of the paper is organized as follows. Section
2 provides an overview of machine learning and frequently used learning algorithms.
Some of the software development and maintenance tasks for which learning algorithms
are applicable are given in Section 3. Formulations of those tasks in terms of the learning
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algorithms are discussed in Section 4. Section 5 describes some of the existing work.
Finally in Section 6, we conclude the paper with remarks on future work.

2. Machine Learning Algorithms

Machine learning deals with the issue of how to build computer programs that improve
their performance at some task through experience [11]. Machine learning algorithms have
been utilized in: (1) data mining problems where large databases may contain valuable
implicit regularities that can be discovered automatically; (2) poorly understood domains
where humans might not have the knowledge needed to develop effective algorithms; and
(3) domains where programs must dynamically adapt to changing conditions [11].
Learning a target function from training data involves many issues (function
representation, how and when to generate the function, with what given input, how to
evaluate the performance of generated function, and so forth). Figure 1 describes the
dimensions of the target function learning.

Major types of learning include: concept learning (CL), decision trees (DT), artificial
neural networks (ANN), Bayesian belief networks (BBN), reinforcement learning (RL),
genetic algorithms (GA) and genetic programming (GP), instance-based learning (IBL),
inductive logic programming (ILP), and analytical learning (AL). Table 1 summarizes the
main properties of different types of learning.

Not surprisingly, machine learning methods can be (and some have already been) used in
developing better tools or software products. Our preliminary study identifies the software
development and maintenance tasks in the following areas to be appropriate for machine
learning applications: requirement engineering (knowledge elicitation, prototyping);
software reuse (application generators); testing and validation; maintenance (software
understanding); project management (cost, effort, or defect prediction or estimation).

3. Software Engineering Tasks

Table 2 contains a list of software engineering tasks for which ML methods are applicable.
Those tasks belong to different life-cycle processes of requirement specification, design,
implementation, testing and maintenance. This list is by no means a complete one. It only
serves as a harbinger of what may become a fertile ground for some exciting research on
applying ML techniques in software development and maintenance.

One of the attractive aspects of ML techniques is the fact that they offer an invaluable
complement to the existing repertoire of tools so as to make it easier to rise to the
challenge of the aforementioned demanding situations.

4. Applying ML Algorithms to SE Tasks

In this section, we formulate the identified software development and maintenance tasks as
learning problems and approach the tasks using machine learning algorithms.

Component reuse

Component retrieval from a software repository is an important issue in supporting
software reuse. This task can be formulated into an instance-based learning problem as
follows:
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Table 1. Major types of learning methods'.

Type Target Target Search Inductive Algorithm’
function function bias
generation’
AL Hom clauses Eager, Deductive B + set of Prolog-EBG
supervised, reasoning Horn clauses
D+B
ANN ANN Eager, Gradient Smooth Back-
supervised, descent guided | interpolation propagation
D (global) between data
points
BBN Bayesian Eager, Probabilistic, Minimum MAP, BOC,
network supervised, no explicit description Gibbs, NBC
D (global), search length
explicit or '
implicit
CL Conjunction of Eager, Version Space ce H Candidate_
attribute supervised, (VS) guided _elimination
constraints D (global)
DT Decision trees Eager, Information Preference for ID3, C4.5,
supervised, gain (entropy) small trees Assistant
D (global)
GA Bit strings, Eager, Hill climbing | Fitness-driven | Prototypical
GP program trees | unsupervised, (simulated GA/GP
noD evolution) algorithms
IBL Not explicitly Lazy, Statistical Similarity to | K-NN, LWR,
defined supervised, reasoning NN CBR
D (local)
ILP If-then rules Eager, Statistical, Rule accuracy, | SCA, FOIL,
supervised, general-to- FOIL-gain, inverse
D (global) specific shorter clauses resolution
RL Control Eager, Through Actions with Q,TD
strategy T* unsupervised, training max. Q value
noD episodes

! The classification here is based on materials in [11].
® The sets D and B refer to training data and domain theory, respectively.
> The algorithms listed are only representatives from different types of learning.
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Table 2. SE tasks and applicable ML methods.

SE tasks Applicable type(s) of learning
Requirement engineering AL, BBN, LL, DT, ILP

Rapid prototyping GP

Component reuse IBL (CBRY)

Cost/effort prediction IBL (CBR), DT, BBN, ANN
Defect prediction BBN

Test oracle generation AL (EBL®)

Test data adequacy CL

Validation AL

Reverse engineering CL

1. Components in a software repository are represented as points in the n-dimensional
Euclidean space (or cases in a case base).

2. Information in a component can be divided into indexed and unindexed information
(attributes). Indexed information is used for retrieval purpose and unindexed
information is used for contextual purpose. Because of the curse of dimensionality
problem [11], the choice of indexed attributes must be judicious.

3. Queries to the repository for desirable components can be represented as constraints on
indexable attributes.

4. Similarity measures for the nearest neighbors of the desirable component can be based
on the standard Euclidean distance, distance-weighted measure, or symbolic measure.

5. The possible retrieval methods include: K-Nearest Neighbor, inductive retrieval,
Locally Weighted Regression.

6. The adaptation of the retrieved component for the task at hand can be structural
(applying adaptation rules directly to the retrieved component), or derivational
(reusing adaptation rules that generated the original solution to produce a new
solution).

Rapid prototyping

Rapid prototyping is an important tool for understanding and validating software
requirements. In addition, software prototypes can be used for other purposes such as user
training and system testing [18]. Different prototyping techniques have been developed for
evolutionary and throw-away prototypings. The existing techniques can be augmented by
including a machine learning approach, i.e., the use of genetic programming.

In GP, a computer program is often represented as a program tree where the internal nodes
correspond to a set of functions used in the program and the external nodes (terminals)
indicate variables and constants used as input to functions. For a given problem, GP starts
with an initial population of randomly generated computer programs. The evolution
process of generating a final computer program that solves the given problem hinges on
some sort of fitness evaluation and probabilistically reproducing the next generation of the

* CBR stands for case-based reasoning.
* EBL refers to explanation-based learning.
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program population through some genetic operations. Given a GP development
environment such as the one in [8], the framework of a GP-based rapid prototyping
process can be described as follows:

1. Define sets of functions and terminals to be used in the developed (prototype) systems.

2. Define a fitness function to be used in evaluating the worthiness of a generated
program. Test data (input values and expected output) may be needed in assisting the
evaluation.

3. Generate the initial program population.

4. Determine selection strategies for programs in the current generation to be included in
the next generation population.

5. Decide how the genetic operations (crossover and mutation) are carried out during
each generation and how often these operations are performed.

6. Specify the terminating criteria for the evolution process and the way of checking for
termination.

7. Translate the returned program into a desired programming language format.

Requirement engineering

Requirement engineering refers to the process of establishing the services a system should
provide and the constraints under which it must operate [18]. A requirement may be
functional or non-functional. A functional requirement describes a system service or
function, whereas a non-functional requirement represents a constraint imposed on the
system. How to obtain functional requirements of a system is the focus here. The situation
in which ML algorithms will be particularly useful is when there exist empirical data from
the problem domain that describe how the system should react to certain inputs. Under this
circumstance, functional requirements can be “learned” from the data through some
learning algorithm.

1. Let X and C be the domain and the co-domain of a system function fto be learned. The
data set D is defined as: D = {<x;, c;>| x;€ X A € C}.

2. The target functions fto be learned is such that Vx; € X and V¢, e C, Sx)=ck.

3. The learning methods applicable here have to be of supervised type. Depending on the
nature of the data set D, different learning algorithms (in AL, BBN, CL, DT, ILP) can
be utilized to capture (learn) a system’s functional requirements.

Reverse engineering

Legacy systems are old systems that are critical to the operation of an organization which
uses them and that must still be maintained. Most legacy systems were developed before
software engineering techniques were widely used. Thus they may be poorly structured
and their documentation may be either out-of-date or non-existent. In order to bring to
bear the legacy system maintenance, the first task is to recover the design or specification
of a legacy system from its source or executable code (hence, the term of reverse
engineering, or program comprehension and understanding). Below we describe a
framework for deriving functional specification of a legacy software system from its
executable code.

1. Given the executable code p and its input data set X, and output set C, the training data
set D is defined as: D = {<x;, p(x; )>| x; € X Ap(x)) € C}.
2. The process of deriving the functional specification Jf for p can be described as a
learning problem in which fis learned through some ML algorithm such that
Vax; € X [ flx) = p(x)].
3. Many supervised learning methods can be used here (e. g, CL).
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Validation

Verification and validation are important checking processes to make sure that
implemented software system conforms to its specification. To check a software
implementation against its specification, we assume the availability of both a specification
and an executable code. This checking process can be performed as an analytic learning
task as follows:

1. Let X and C be the domain and co-domain of the implementation (executable code) p,
which is defined as: p: X — C.

2. The training set D is defined as: D = {<x, P> x;e X }.

3. The specification for p is denoted as B, which corresponds to the domain theory in the
analytic learning.

4. The validation checking is defined to be: pisvalid if

V<x; p(x))> € D [B Ax; - p(x))].
5. Explanation-based learning algorithms can be utilized to carry out the checking
process.

Test oracle generation

Functional testing involves executing a program under test and examining the output from
the program. An oracle is needed in functional testing in order to determine if the output
from a program is correct. The oracle can be a human or a software one [13]. The
approach we propose here allows a test oracle to be learned as a function from the
specification and a small set of training data. The learned test oracle can then be used for
the functional testing purpose.

1. Let X and C be the domain and co-domain of the program p to be tested. Let B be the
specification for p.

2. Define a small training set D as: D = {<x, px)>|xie X’ AX X A p(x;) € C}.

3. Use the explanation-based learning (EBL) to generate a test oracle © (©:X—>C)forp
from B and D.

4. Use O for the functional testing: Vx; € X [output of p is correct if p(x;) = 0O(x)].

Test adequacy criteria

Software test data adequacy criteria are rules that determine if a software product has been
adequately tested [21]. A test data adequacy criterion { is a function: {: Px S x T — {true,
false} where P is a set of programs, S a set of specifications and T the class of test sets.
C(p, s, t) = true means that t is adequate for testing program p against specification s
according to criterion (. Since { is essentially a Boolean function, we can use a strategy
such as CL to learn the test data adequacy criteria.

1. Define the instance space X as: X = {<Pos,t>|pieP AsieS A fe T}.

2. Define the training data set D as: D = {<x, L)>x e X A {(x) e V), where V is
defined as: V = {true, false}.

3. Use the concept of version space and the candidate-elimination algorithm in CL to
learn the definition of {.

Software defect prediction

Software defect prediction is a very useful and important tool to gauge the likely delivered
quality and maintenance effort before software systems are deployed [4]. Predicting
defects requires a holistic model rather than a single-issue model that hinges on either size,
or complexity, or testing metrics, or process quality data alone. It is argued in [4] that all
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these factors must be taken into consideration in order for the defect prediction to be
successful. :

Bayesian Belief Networks (BBN) prove to be a very useful approach to the software
defect prediction problem. A BBN represents the joint probability distribution for a set of
variables. This is accomplished by specifying (a) a directed acyclic graph (DAG) where
nodes represent variables and arcs correspond to conditional independence assumptions
(causal knowledge about the problem domain), and (b) a set of local conditional
probability tables (one for each variable) [7, 11]. A BBN can be used to infer the
probability distribution for a target variable (e.g., “Defects Detected”), which specifies the
probability that the variable will take on each of its possible values (e.g., “very low”,
“low”, “medium”, “high”, or “very high” for the variable “Defects Detected”) given the
observed values of the other variables. In general, a BBN can be used to compute the
probability distribution for any subset of variables given the values or distributions for any
subset of the remaining variables. When using a BBN for a decision support system such
as software defect prediction, the steps below should be followed.

1. Identify variables in the BBN. Variables can be: (a) hypothesis variables for which the
user would like to find out their probability distributions (hypothesis variable are either
unobservable or too costly to observe), (b) information variables that can be observed,
or (c) mediating variables that are introduced for certain purpose (help reflect
independence properties, facilitate acquisition of conditional probabilities, and so
forth). Variables should be defined to reflect the life-cycle activities (specification,
design, implementation, and testing) and capture the multi-facet nature of software
defects (perspectives from size, testing metrics and process quality). Variables are
denoted as nodes in the DAG.

2. Define the proper causal relationships among variables. These relationships also
should capture and reflect the causality exhibited in the software life-cycle processes.
They will be represented as arcs in the corresponding DAG.

3. Acquire a probability distribution for each variable in the BBN. Theoretically well-
founded probabilities, or frequencies, or subjective estimates can all be used in the
BBN. The result is a set of conditional probability tables one for each variable. The
full joint probability distribution for all the defect-centric variables is embodied in the
DAG structure and the set of conditional probability tables.

Project effort (cost) prediction

How to estimate the cost for a software project is a very important issue in the software
project management. Most of the existing work is based on algorithmic models of effort
[17]. A viable alternative approach to the project effort prediction is instance-based
learning. IBL yields very good performance for situations where an algorithmic model for
the prediction is not possible. In the framework of IBL, the prediction process can be
carried out as follows.

1. Introduce a set of features or attributes (e.g., number of interfaces, size of functional
requirements, development tools and methods, and so forth) to characterize projects.
The decision on the number of features has to be judicious, as this may become the
cause of the curse of dimensionality problem that will affect the prediction accuracy.
Collect data on completed projects and store them as instances in the case base.

Define similarity or distance between instances in the case base according to the
symbolic representations of instances (e.g., Euclidean distance in an n-dimensional
space where n is the number of features used). To overcome the potential curse of

el N
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dimensionality problem, features may be weighed differently when calculating the
distance (or similarity) between two instances.
4. Given a query for predicting the effort of a new project, use an algorithm such as K-

Nearest Neighbor, or, Locally Weighted Regression to retrieve similar projects and use
them as the basis for returning the prediction result.

5. Existing Work

Several areas in software development have already witnessed the use of machine learning
methods. In this section, we take a look at some reported results. The list is definitely not a
complete one. It only serves as an indication that people realize the potential of ML
techniques and begin to reap the benefits from applying them in software development and
maintenance.

Scenario-based requirement engineering

The work reported in [9] describes a formal method for supporting the process of inferring
specifications of system goals and requirements inductively from interaction scenarios
provided by stakeholders. The method is based on a learning algorithm that takes
scenarios as examples and counter-examples (positive and negative scenarios) and
generates goal specifications as temporal rules.

A related work in [6] presents a scenarios-based elicitation and validation assistant that
helps requirements engineers acquire and maintain a specification consistent with
scenarios provided. The system relies on explanation-based learning (EBL) to generalize
scenarios to state and prove validation lemmas.

Software project effort estimation

Instance-based learning techniques are used in [17] for predicting the software project
effort for new projects. The empirical results obtained (from nine different industrial data
sets totaling 275 projects) indicate that cased-based reasoning offers a viable complement
to the existing prediction and estimations techniques. A related CBR application in
software effort estimation is given in [20].

Decision trees (DT) and artificial neural networks (ANN) are used in [19] to help predict
software development effort. The results were competitive with conventional methods
such as COCOMO and function points. The main advantage of DT and ANN based
estimation systems is that they are adaptable and nonparametric.

The result reported in [3] indicates that the improved predictive performance can be
obtained through the use of Bayesian analysis. Additional research on ML based software
effort estimation can be found in [2,14,15,16].

Software defect prediction

Bayesian belief networks are used in [4] to predict software defects. Though the system
reported is only a prototype, it shows the potential BBN has in incorporating multiple
perspectives on defect prediction into a single, unified model.

Variables in the prototype BBN system [4] are chosen to represent the life-cycle processes
of specification, design and implementation, and testing (Problem-Complexity, Design-
Effort, Design-Size, Defects-Introduced, Testing-Effort, Defects-Detected, Defects-
Density-At-Testing, Residual-Defect-Count, and Residual-Defect-Density). The proper
causal relationships among those software life-cycle processes are then captured and
reflected as arcs connecting the variables.
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A tool is then used with regard to the BBN model in the following manner. For given facts
about Design-Effort and Design-Size as input, the tool will use Bayesian inference to
derive the probability distributions for Defects-Introduced, Defects-Detected and Defect-
Density.

6. Concluding Remarks

In this paper, we show how ML algorithms can be used in tackling software engineering
problems. ML algorithms not only can be used to build tools for software development
and maintenance tasks, but also can be incorporated into software products to make them
adaptive and self-configuring. A maturing software engineering discipline will definitely
be able to benefit from the utility of ML techniques.

What lies ahead is the issue of realizing the promise and potential ML techniques have to
offer in the circumstances as discussed in Section 4. In addition, expanding the frontier of
ML application in software engineering is another direction worth pursuing.
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